Skip to main content

Cryptography of Blockchain

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13828))

Included in the following conference series:

  • 825 Accesses

Abstract

With the development of digital currencies and 5G technology, blockchain has gained widespread attention and is being used in areas such as healthcare, industry and smart vehicles. Many security issues have also been exposed in the course of blockchain applications. Cryptography can ensure the security of data on the blockchain, the integrity and validity of data as well as the ability to authenticate users and anonymize them. This article therefore examines the cryptography underlying blockchain security issues, providing an overview of cryptographic homomorphic encryption, zero-knowledge proofs and secure multi-party computation commonly used in blockchains. At the same time, the development of quantum computing is bound to affect existing cryptographic systems, and blockchains applying these cryptographic systems are bound to be hit hard, so this article discusses four of the most promising post-quantum cryptography techniques available: hash-based public key cryptography, code-based public key cryptography, multivariate public key cryptography, and lattice-based public key cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decent. Bus. Rev., 21260 (2008)

    Google Scholar 

  2. Liang, W., Xiao, L., Zhang, K., et al.: Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet Things J. (2021)

    Google Scholar 

  3. Kumar, P., Kumar, R., et al.: PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)

    Article  Google Scholar 

  4. He, W., Zheng, H.: Literature review on block chain: technology, principle and development. J. Phys. Conf. Ser. 1848(1), 012166 (2021)

    Google Scholar 

  5. Xu, Z., Liang, W., Li, K.C., et al.: A time-sensitive token-based anonymous authentication and dynamic group key agreement scheme for industry 5.0. IEEE TII (2021)

    Google Scholar 

  6. Gorkhali, A., Li, L., Shrestha, A.: Blockchain: a literature review. J. Manag. Anal. 7(3), 321–343 (2020)

    Google Scholar 

  7. Liang, W., et al.: PDPChain: a consortium blockchain-based privacy protection scheme for personal data. IEEE Trans. Reliab., 1–13 (2022). https://doi.org/10.1109/TR.2022.3190932

  8. Long, J., Liang, W., Li, K.C., et al.: A regularized cross-layer ladder network for intrusion detection in industrial Internet-of-Things. IEEE Trans. Ind. Inform. (2022)

    Google Scholar 

  9. Liang, W., Xie, S., Cai, J., et al.: Novel private data access control scheme suitable for mobile edge computing. China Commun. 18(11), 92–103 (2021)

    Article  Google Scholar 

  10. Zhao, J., Huang, J., et al.: An effective exponential-based trust and reputation evaluation system in wireless sensor networks. IEEE Access 7, 33859–33869 (2019)

    Article  Google Scholar 

  11. Nejatollahi, H., Dutt, N., Ray, S., et al.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. (CSUR) 51(6), 1–41 (2019)

    Article  Google Scholar 

  12. Li, X., Liao, J., Kumari, S., Liang, W., Wu, F., Khan, M.K.: A new dynamic id-based user authentication scheme using mobile device: cryptanalysis, the principles and design. Wirel. Pers. Commun. 85(1), 263–288 (2015). https://doi.org/10.1007/s11277-015-2737-z

    Article  Google Scholar 

  13. Liang, W., Xie, S., Cai, J., et al.: Deep neural network security collaborative filtering scheme for service recommendation in intelligent cyber-physical systems. IEEE IoT J. (2021)

    Google Scholar 

  14. Liang, W., Ning, Z., Xie, S., et al.: Secure fusion approach for the internet of things in smart autonomous multi-robot systems. Inf. Sci. 579, 468–482 (2021)

    Article  MathSciNet  Google Scholar 

  15. Qiu, M., Jia, Z., et al.: Voltage assignment with guaranteed probability satisfying timing constraint for real-time multiproceesor DSP. J. Signal Proc. Syst. (2007)

    Google Scholar 

  16. Qiu, M., Yang, L., et al.: Dynamic and leakage energy minimization with soft real-time loop scheduling and voltage assignment. IEEE TVLSI 18(3), 501–504 (2009)

    Google Scholar 

  17. Qiu, M., Xue, C., et al.: Energy minimization with soft real-time and DVS for uniprocessor and multiprocessor embedded systems. In: IEEE DATE Conference, pp. 1–6 (2007)

    Google Scholar 

  18. Qiu, M., Chen, Z., et al.: Energy-aware data allocation with hybrid memory for mobile cloud systems. IEEE Syst. J. 11(2), 813–822 (2014)

    Article  Google Scholar 

  19. Qiu, M., Xue, C., Shao, Z., et al.: Efficient algorithm of energy minimization for heterogeneous wireless sensor network. In: IEEE EUC, pp. 25–34 (2006)

    Google Scholar 

  20. Li, J., Ming, Z., et al.: Resource allocation robustness in multi-core embedded systems with inaccurate information. J. Syst. Architect. 57(9), 840–849 (2011)

    Article  Google Scholar 

  21. Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in blockchain. IEEE Access 7, 148550–148575 (2019)

    Article  Google Scholar 

  22. Qiu, H., Dong, T., et al.: Adversarial attacks against network intrusion detection in IoT systems. IEEE Internet Things J. 8(13), 10327–10335 (2020)

    Article  Google Scholar 

  23. Gai, K., Qiu, M., Elnagdy, S.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity (2016)

    Google Scholar 

  24. Hu, F., Lakdawala, S., et al.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf. Tech. Biomed. 13(4), 656–663 (2009)

    Google Scholar 

  25. Qiu, H., Zheng, Q., et al.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. ITS (2020)

    Google Scholar 

  26. Li, Y., Gai, K., et al.: Intercrossed access controls for secure financial services on multimedia big data in cloud systems. ACM Trans. Multimedia Comput. Commun. Appl. (2016)

    Google Scholar 

  27. Qiu, M., Qiu, H., et al.: Secure data sharing through untrusted clouds with blockchain-enabled key management. In: The 3rd SmartBlock, Zhengzhou, China, October 2020, pp. 11–16 (2020)

    Google Scholar 

  28. Gai, K., Zhang, Y., et al.: Blockchain-enabled service optimizations in supply chain digital twin. IEEE Trans. Serv. Comput. (2022)

    Google Scholar 

  29. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  30. Gai, K., Qiu, M.: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers. IEEE Trans. Ind. Inf. 14(8), 3590–3598 (2017)

    Article  Google Scholar 

  31. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)

    Google Scholar 

  32. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (eds.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

  33. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

  34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 203–225 (2019)

    Google Scholar 

  35. Chor, B., Goldwasser, S., Micali, S., et al.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: 26th IEEE Symposium on Foundations of Computer Science (SFCS), pp. 383–395 (1985)

    Google Scholar 

  36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (eds) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

  37. Parno, B., Howell, J., Gentry, C., et al.: Pinocchio: nearly practical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

    Article  Google Scholar 

  38. Banerjee, A., Clear, M., Tewari, H.: Demystifying the role of zk-SNARKs in Zcash. In: IEEE Conference on Application, Information and NETWORK SECURITY (AINS), pp. 12–19 (2020)

    Google Scholar 

  39. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

  40. Sasson, E.B., Chiesa, A., Garman, C., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  41. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21

  42. Wang, Z., Cheung, S.C.S., Luo, Y.: Information-theoretic secure multi-party computation with collusion deterrence. IEEE Trans. Inf. Forensics Secur. 12(4), 980–995 (2016)

    Google Scholar 

  43. Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature 549(7671), 188–194 (2017)

    Article  Google Scholar 

  44. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  45. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  46. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4

  47. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Google Scholar 

  48. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

  49. Merkle, R.C.: Secrecy, authentication, and public key systems. Stanford University (1979)

    Google Scholar 

  50. Kumari, S., Singh, M., Singh, R., et al.: Signature based Merkle Hash Multiplication algorithm to secure the communication in IoT devices. Knowl. Based Syst. 253, 109543 (2022)

    Article  Google Scholar 

  51. Chalkias, K., Brown, J., Hearn, M., et al.: Blockchained post-quantum signatures. In: IEEE iThings/GreenCom/CPSCom/SmartData, pp. 1196–1203 (2018)

    Google Scholar 

  52. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244, 114–116 (1978)

    Google Scholar 

  53. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for McEliece cryptosystem. In: 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, pp. 1366–1370 (2016)

    Google Scholar 

  54. Ding, J., Yang, B.Y.: Multivariate public key cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 193–241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinyan Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, Y., Gong, Y., Huang, W., Cai, J., Xu, N., Li, Kc. (2023). Cryptography of Blockchain. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics