Abstract
In recent years, blockchain research has set off an upsurge in academia, and it is called the next generation of value Internet. Because of its decentralization, anonymity, security, immutability, traceability and other characteristics, blockchain is gradually accepted and developed by people. With the deepening of research and the integration of technologies such as deep learning, blockchain has gradually been applied to various fields such as credit reporting, government, medical care, and industrial Internet of Things, not just the initial virtual currency field. This article mainly discusses the three important stages of blockchain public chain development, namely Bitcoin, Ethereum, and meta-verse, and introduces some basic supporting technologies of blockchain, as well as the research status and future trends of blockchain. Simple Analysis. By vertically introducing the development history of the blockchain, researchers can have a more concrete understanding of the status quo of the blockchain, and provide ideas for blockchain-related research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang, Y., Liang, W., Long, J., et al.: A novel identity authentication for FPGA based IP designs. In: 17th IEEE TrustCom/BigDataSE, pp. 1531–1536 (2018)
Bach, L.M., Mihaljevic, B., Zagar, M.: Comparative analysis of blockchain consensus algorithms. In: 41st IEEE MIPRO, pp. 1545–1550 (201)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decent. Bus. Rev., 21260 (2008)
Wang, Y., Su, Z., Zhang, N., et al.: A survey on metaverse: fundamentals, security, and privacy. IEEE Commun. Surv. Tutor. (2022)
Liang, W., Tang, M., et al.: SIRSE: a secure identity recognition scheme based on electroencephalogram data with multi-factor feature. Comput. Electr. Eng. 65, 310–321 (2018)
Xu, Z., Liang, W., Li, K.C., et al.: A time-sensitive token-based anonymous authentication and dynamic group key agreement scheme for industry 5.0. IEEE TII (2021)
Li, Y., Liang, W., Peng, L., et al.: Predicting drug-target interactions via dual-stream graph neural network. IEEE/ACM Trans. Comput. Biol. Bioinform. (2022)
Liang, W., Li, Y., Xie, K., et al.: Spatial-temporal aware inductive graph neural network for C-ITS data recovery. IEEE Trans. Intell. Transp. Syst. (2022)
Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY J. Transhumanist Thought (16) 18(2), 28 (1996)
Bambara, J.J., Allen, P.R.: Blockchain. A practical Guide to Developing Business, Law and Technology Solutions. McGraw-Hill Professional, New York (2018)
Yaga, D., Mell, P., Roby, N., et al.: Blockchain technology overview. arXiv preprint arXiv:1906.11078 (2019)
Belotti, M., Božić, N., Pujolle, G., et al.: A vademecum on blockchain technologies: when, which, and how. IEEE Commun. Surv. Tutor. 21(4), 3796–3838 (2019)
Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. NCD, vol. 537. Springer, , Heidelberg (1990). https://doi.org/10.1007/3-540-38424-3_32
Zhang, F., Shi, B., Jiang, W.: A review of key technologies and applications of blockchain. J. Netw. Inf. Secur. 4(4), 22–29 (2018)
Rachmawati, D., Tarigan, J.T., Ginting, A.B.C.: A comparative study of message digest 5 (MD5) and SHA256 algorithm. J. Phys. Conf. Ser. 978(1), 012116 (2018)
Buterin, V.: A next-generation smart contract and decentralized application platform. White Pap. 3(37), 2–1 (2014)
Osterland, T., Rose, T.: Model checking smart contracts for ethereum. Pervasive Mob. Comput. 63, 101129 (2020)
Jili, F., Xiaohua, L., Tiezheng, N., et al.: Overview of smart contract technology in blockchain system. Comput. Sci. 46(11), 1–10 (2019)
Praitheeshan, P., Pan, L., Doss, R.: Security evaluation of smart contract-based on-chain ethereum wallets. In: Kutyłowski, M., Zhang, J., Chen, C. (eds.) NSS 2020. LNCS, vol. 12570, pp. 22–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65745-1_2
Jha, N., Prashar, D., Khalaf, O.I., et al.: Blockchain based crop insurance: a decentralized insurance system for modernization of Indian farmers. Sustainability 13(16), 8921 (2021)
Yang, X., Liu, M., Au, M.H., et al.: Efficient verifiably encrypted ECDSA-like signatures and their applications. IEEE TDSC 17, 1573–1582 (2022)
Gai, K., Guo, J., Zhu, L., et al.: Blockchain meets cloud computing: a survey. IEEE Commun. Surv. Tutor. 22(3), 2009–2030 (2020)
Liang, W., Yang, Y., Yang, C., et al.: PDPChain: a consortium blockchain-based privacy protection scheme for personal data. IEEE Trans. Reliab. (2022)
Liang, W., Xiao, L., Zhang, K., et al.: Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet Things J. (2021)
Yang, Q., Zhao, Y., Huang, H., et al.: Fusing blockchain and AI with metaverse: a survey. IEEE Open J. Comput. Soc. 3, 122–136 (2022)
Joshua, J.: information bodies: computational anxiety in Neal Stephenson’s snow crash. Interdiscip. Lit. Stud. 19(1), 17–47 (2017)
Meta, I.: A social technology company. Meta 12(11), 2021 (2021)
Games, E.: Fortnite. Epic Games (2017)
Liang, W., Tang, M., Long, J., et al.: A secure fabric blockchain-based data transmission technique for industrial Internet-of-Things. IEEE TII 15(6), 3582–3592 (2019)
Li, Y., Gai, K., et al.: Intercrossed access controls for secure financial services on multimedia big data in cloud systems. ACM Trans. Multimedia Comput. Commun. Appl. (2016)
Gai, K., Qiu, M., Elnagdy, S.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity (2016)
Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., Qiu, M.: Adversarial attacks against network intrusion detection in IoT systems. IEEE IoT J. 8(13), 10327–10335 (2020)
Kumar, P., Kumar, R., et al.: PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)
Hu, F., Lakdawala, S., et al.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf. Technol. Biomed. 13(4), 656–663 (2009)
Niu, J., Gao, Y., et al.: Selecting proper wireless network interfaces for user experience enhancement with guaranteed probability. JPDC 72(12), 1565–1575 (2012)
Qiu, M., Xue, C., Shao, Z., Zhuge, Q., Liu, M., Sha, E.H.M.: Efficent algorithm of energy minimization for heterogeneous wireless sensor network. In: Sha, E., et al. (eds.) EUC 2006. LNCS, vol. 4096, pp. 25–34. Springer, Heidelberg (2006). https://doi.org/10.1007/11802167_5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, S., Cai, J., Zhu, H., Yang, C., Chen, L., Xiao, W. (2023). Blockchain Development. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_56
Download citation
DOI: https://doi.org/10.1007/978-3-031-28124-2_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28123-5
Online ISBN: 978-3-031-28124-2
eBook Packages: Computer ScienceComputer Science (R0)