Skip to main content

A Feature Extraction Algorithm Based on Blockchain Storage that Combines ORB Feature Points and Quadtree Division

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13828))

Included in the following conference series:

  • 760 Accesses

Abstract

In the process of 5G power grid inspection robot moving for a long time, the sensor constantly collects the feature information of the substation. Due to the limited memory capacity, this feature information must be stored on the network, which requires the storage network must have strong security. The storage network based on blockchain can better solve the problem of feature data encryption, and a good feature extraction method can also relieve the pressure of network storage. As the input information of the whole SLAM, feature points play a crucial role in the detection performance and accuracy of the whole SLAM. When the extracted feature points are few or evenly distributed, they cannot express the information of the whole environment, which will make the mapping and localization error of SLAM system larger, and seriously lead to the loss of tracking. In this paper, we first analyze the standard ORB algorithm and the Qtree_ORB algorithm. Aiming at the problems existing in the two algorithms, an improved ORB feature extraction algorithm is developed. For the problem that the feature points extracted by the Qtree_ORB algorithm are too uniform, the maximum division depth of the quadtree is limited according to the number of feature points required for each layer of the image pyramid, which improves the problem that the feature points are too uniform. Finally, we evaluate the performance of the improved algorithm, and analyze the uniformity of feature points to verify the performance and robustness of the improved algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia, Y., et al.: A survey of simultaneous localization and mapping for robot. In: IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 1, pp. 857–861 (2019)

    Google Scholar 

  2. Yao, Y., et al.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  3. Guo, J., Ni, R., Zhao, Y.: DeblurSLAM: a novel visual slam system robust in blurring scene. In: IEEE 7th ICVR, pp. 62–68 (2021)

    Google Scholar 

  4. Li, Y., et al.: Research and improvement of feature detection algorithm based on FAST. Rendiconti Lincei. Scienze Fisiche e Naturali 32(4), 775–789 (2021). https://doi.org/10.1007/s12210-021-01020-1

    Article  Google Scholar 

  5. Szeliski, R.: Feature detection and matching. In: Szeliski, R. (ed.) Computer Vision. TCS, pp. 333–399. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-34372-9_7

    Chapter  MATH  Google Scholar 

  6. Qiu, M., et al.: Energy minimization with soft real-time and DVS for uniprocessor and multiprocessor embedded systems. In: IEEE DATE, pp. 1–6 (2007)

    Google Scholar 

  7. Qiu, M., et al.: Dynamic and leakage energy minimization with soft real-time loop scheduling and voltage assignment. IEEE TVLSI 18(3), 501–504 (2009)

    Google Scholar 

  8. Wu, C., Luo, C., Xiong, N., Zhang, W., et al.: A greedy deep learning method for medical disease analysis. IEEE Access 6, 20021–20030 (2018)

    Article  Google Scholar 

  9. Li, J., Ming, Z., et al.: Resource allocation robustness in multi-core embedded systems with inaccurate information. J. Syst. Archit. 57(9), 840–849 (2011)

    Article  Google Scholar 

  10. Zhou, Y., Zhang, Y., et al.: A bare-metal and asymmetric partitioning approach to client virtualization. IEEE Trans. Serv. Comput. 7(1), 40–53 (2012)

    Article  MathSciNet  Google Scholar 

  11. Qiu, H., Qiu, M., Memmi, G., Ming, Z., Liu, M.: A dynamic scalable blockchain based communication architecture for IoT. In: Qiu, M. (ed.) SmartBlock 2018. LNCS, vol. 11373, pp. 159–166. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05764-0_17

    Chapter  Google Scholar 

  12. Zhihui, L., Gai, K., et al.: Machine learning empowered content delivery: status, challenges, and opportunities. IEEE Netw. 34(6), 228–234 (2020)

    Article  Google Scholar 

  13. Zhang, Y., Gai, K., et al.: Blockchain-empowered efficient data sharing in Internet of Things settings. IEEE J. Sel. Areas Commun. 40(12), 3422–3436 (2022)

    Article  Google Scholar 

  14. Qiu, H., Qiu, M., Lu, R.: Secure V2X communication network based on intelligent PKI and edge computing. IEEE Netw. 34(2), 172–178 (2019)

    Article  Google Scholar 

  15. Qiu, H., Zeng, Y., et al.: DeepSweep: an evaluation framework for mitigating DNN backdoor attacks using data augmentation. In: ACM Asia CCS (2021)

    Google Scholar 

  16. Gai, K., et al.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity (2016)

    Google Scholar 

  17. Gai, K., Yulu, W., et al.: Differential privacy-based blockchain for industrial Internet-of-Things. IEEE Trans. Ind. Inform. 16(6), 4156–4165 (2019)

    Article  Google Scholar 

  18. Tian, Z., Li, M., et al.: Block-DEF: a secure digital evidence framework using blockchain. Inf. Sci. 491, 151–165 (2019)

    Article  Google Scholar 

  19. Zhang, Y., Gai, K., Wei, Y., Zhu, L.: BS-KGS: blockchain sharding empowered knowledge graph storage. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12817, pp. 451–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82153-1_37

    Chapter  Google Scholar 

  20. Kumar, P., Kumar, R., et al.: PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)

    Article  Google Scholar 

  21. Cheng, H., et al.: Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM. IEEE Access 7, 117883–117896 (2019)

    Article  Google Scholar 

  22. Fu, A., Zhang, X., et al.: VFL: a verifiable federated learning with privacy-preserving for big data in industrial IoT. IEEE TII 18(5), 3316–3326 (2020)

    Google Scholar 

  23. Huang, S., Zeng, Z., et al.: An intelligent collaboration trust interconnections system for mobile information control in ubiquitous 5G networks. IEEE TNSE 8(1), 347–365 (2020)

    MathSciNet  Google Scholar 

  24. Bin, Z., Xiaohu, Z., Zhishuai, Y.: Image feature matching algorithm based on improved ORB. Laser Optoelectron. Prog. 58(2), 0210006 (2021)

    Article  Google Scholar 

  25. Gao, Y., et al.: Human action monitoring for healthcare based on deep learning. IEEE Access 6, 52277–52285 (2018)

    Article  Google Scholar 

  26. Xia, F., et al.: Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks. J. Syst. Archit. 59(10), 1231–1242 (2013)

    Article  Google Scholar 

  27. Dong, H., Song, W., et al.: Autonomous recognition technology of carrier robot on various terrain environment. Inst. Mech. Eng. Part D J. Autom. Eng. 235(9), 2568–2584 (2021)

    Article  Google Scholar 

  28. Yang, S., et al.: MGC-VSLAM: a meshing-based and geometric constraint VSLAM for dynamic indoor environments. IEEE Access 8, 81007–81021 (2020)

    Article  Google Scholar 

  29. Yang, X., Jiang, G.: A practical 3D reconstruction method for weak texture scenes. Remote Sens. 13(16), 3103 (2021)

    Article  Google Scholar 

  30. Zhou, F., Zhang, L., et al.: Improved point-line feature based visual SLAM method for complex environments. Sensors 21(13), 4604 (2021)

    Article  Google Scholar 

  31. Mur-Artal, R., Tardós, J.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  32. Lin, C., He, Y.-X., Xiong, N.: An energy-efficient dynamic power management in wireless sensor networks. In: 2006 Fifth International Symposium on Parallel and Distributed Computing, pp. 148–154. IEEE (2006)

    Google Scholar 

  33. Chen, Y., et al.: KNN-BLOCK DBSCAN: fast clustering for large-scale data. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3939–3953 (2019)

    Article  Google Scholar 

  34. Wu, C.: UAV autonomous target search based on deep reinforcement learning in complex disaster scene. IEEE Access 7, 117227–117245 (2019)

    Article  Google Scholar 

  35. Liu, X., Yuan, X., Kang, H., Kang, H., Yu, C.: An image registration method based on improved TLD and improved ORB for mobile augmented reality. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2127–2132. IEEE (2021)

    Google Scholar 

  36. Zhang, D., Yang, T.: Visual object tracking algorithm based on biological visual information features and few-shot learning. Comput. Intell. Neurosci. 2022 (2022)

    Google Scholar 

  37. Zhao, J., et al.: An effective exponential-based trust and reputation evaluation system in wireless sensor networks. IEEE Access 7, 33859–33869 (2019)

    Article  Google Scholar 

  38. Yao, J., Zhang, P., et al.: An adaptive uniform distribution ORB based on improved quadtree. IEEE Access 7, 143471–143478 (2019)

    Article  Google Scholar 

  39. Mikolajczyk, K., Tuytelaars, T., et al.: A comparison of affine region detectors. Intl. J. Comput. Vis. 65(1), 43–72 (2005). https://doi.org/10.1007/s11263-005-3848-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61963017; in part by National Natural Science Foundation of China, under Grant (No. 62177019, F0701); in part by Shanghai Educational Science Research Project, China, under Grant C2022056; in part by the Outstanding Youth Planning Project of Jiangxi Province, China, under Grant 20192BCBL23004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Liu, Y., Zhang, H., Xiong, N. (2023). A Feature Extraction Algorithm Based on Blockchain Storage that Combines ORB Feature Points and Quadtree Division. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics