Skip to main content

Fbereum: A Novel Distributed Ledger Technology System

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13828))

Included in the following conference series:

  • 776 Accesses

Abstract

Over the past several years, due to the progression toward data-driven scientific disciplines, the field of Big Data has gained significant importance. These developments pose certain challenges in the area of efficient, effective, and secure management and transmission of digital information. This paper presents and evaluates a novel Distributed Ledger Technology (DLT) system, Fibereum, in a variety of use-cases, including a DLT-based system for Big Data exchange, as well as the fungible and non-fungible exchange of artwork, goods, commodities, and digital currency. Fibereum’s innovations include the application of non-linear data structures and a new concept of Lazy Verification. We demonstrate the benefits of these novel features for DLT system applications’ cost performance and their added resilience towards cyber-attacks via the consideration of several use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A PoET consensus mechanism may be employed to reduce operation complexity and energy consumption and improve counterattack capabilities.

References

  1. Narayanan, A.: Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, Princeton (2016)

    Google Scholar 

  2. Lipton, A., Treccani, A.: Blockchain and Distributed Ledgers: Mathematics, Technology, and Economics. World Scientific, Singapore (2022)

    MATH  Google Scholar 

  3. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. http://www.bitcoin.org/bitcoin.pdf

  4. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  5. Horowitz, E., Sahni, S.: Fundamentals of Data Structures. Sung Kung Computer Book Co. (1987)

    Google Scholar 

  6. Androulaki, E., et al.: Hyperledger fabric. In: Proceedings of the Thirteenth EuroSys Conference. ACM (2018)

    Google Scholar 

  7. Introduction to smart contracts. https://ethereum.org/en/developers/docs/

  8. Muller, M.: Essentials of Inventory Management. HarperCollins Leadership, Nashville (2019)

    Google Scholar 

  9. Chopra, S., Meindl, P.: Supply chain management. Strategy, planning & operation. In: What’s New in Operations Management. Pearson (2018)

    Google Scholar 

  10. Fraga-Lamas, P., Fernandez-Carames, T.M. Leveraging distributed ledger technologies and blockchain to combat fake news (2019). CoRRabs/1904.05386. arXiv:1904.05386. http://arxiv.org/abs/1904.05386

  11. Wang, Q., et al.: Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges (2021). arXiv:2105.07447

  12. Merkle, R.: A certified digital signature. In: Crypto, vol. 89, pp. 218–238 (1989)

    Google Scholar 

  13. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

    Article  Google Scholar 

  14. Dabbagh, M., et al.: A survey of empirical performance evaluation of per-missioned blockchain platforms. Comput. Secur. 100, 102078 (2021)

    Article  Google Scholar 

  15. Pal, A., Kant, K.: DC-PoET: proof-of-elapsed-time consensus with distributed coordination for blockchain networks. In: 2021 IFIP Networking Conference (IFIP Networking), pp. 1–9 (2021)

    Google Scholar 

  16. Peng, K.: A general, flexible, and efficient proof of inclusion and exclusion (1970)

    Google Scholar 

  17. Proof-of-stake (POS). https://ethereum.org/en/developers/docs

  18. Liu, Y.C.: Performance of a CSMA/CD protocol for Local Area Networks. https://ieeexplore.ieee.org/document/1146621

  19. Tenenbaum, A.S.: Computer Networks. Prentice Hall, Indore (2009)

    Google Scholar 

  20. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: usenixsecurity15 (2015)

    Google Scholar 

  21. Iqbal, M., Matuleviˇcius, R.: Exploring sybil and double-spending risks in blockchain systems. IEEE Access 9, 76153–76177 (2021)

    Article  Google Scholar 

  22. Joshi, J., Mathew, R.: A survey on attacks of bitcoin. In: Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2018), pp. 953–959 (2020)

    Google Scholar 

  23. Frankenfield, J.: 51% attack: definition, who is at risk, example, and cost (2022). https://www.investopedia.com/

  24. Raikwar, M., Gligoroski, D.: DoS Attacks on Blockchain Ecosystem (2022)

    Google Scholar 

  25. Jansen, M.: Do smart contract languages need to be turing complete?” In: Blockchain and Applications, pp. 19–26 (2020)

    Google Scholar 

  26. Ethereum smart contracts. In: 2020 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE). IEEE (2020)

    Google Scholar 

  27. Torres, C.F., Camino, R., State, R.: An empirical study of frontrunning on the ethereum blockchain. In: Usenixsecurity21 (2021)

    Google Scholar 

  28. Ali Khan, Z., Siami Namin, A.: A Survey on Vulnerabilities of Ethereum Smart Contracts (2020). ArXiv 2012.1448

    Google Scholar 

  29. Chen, H., et al.: A Survey on Ethereum Systems Security: Vulnerabilities, Attacks and Defenses (2019). ArXiv.1908.04507

    Google Scholar 

  30. Samreen, N.F., Alalfi, M.H.: SmartScan: an approach to detecting denial of service vulnerability in ethereum smart contracts. CoRR abs/2105.02852 (2021). arXiv: 2105–02852. https://arxiv.org/abs/2105.02852

  31. Gojka, E.E., et al.: Security in distributed ledger technology: an analysis of vulnerabilities and attack vectors. In: Intelligent Computing, pp. 722–742 (2021)

    Google Scholar 

  32. Putz, B., Pernul, G.: Trust factors and insider threats in permissioned distributed ledgers - an analytical study and evaluation of popular DLT Frameworks. https://core.ac.uk/outputs/232204350

  33. Davenport, A., Shetty, S., Liang, X.: Attack surface analysis of permissioned blockchain platforms for smart cities. In: 2018 IEEE International Smart Cities Conference (ISC2), pp. 1–6 (2018)

    Google Scholar 

  34. Cäsar, F.: Cerberus: A parallelized BFT consensus protocol for radix (1970). https://api.semanticscholar.org/CorpusID:221297416

  35. Snow, P., et al.: Factom Ledger by Consensus (2015). https://cryptochainuni.com/wp-content/uploads/Factom-Ledger-by-Consensus

  36. Kaur, G., Gandhi, C.: Chapter 15 - scalability in blockchain: challenges and solutions. In: Handbook of Research on Blockchain Technology, pp. 373–406 (2020)

    Google Scholar 

  37. Gai, K., Wu, Y., Zhu, L.Q., Shen, M.: Privacy-preserving energy trading using consortium blockchain in smart grid. IEEE Trans. Industr. Inf. 15(6), 3548–3558 (2019)

    Article  Google Scholar 

  38. Zhu, L. Wu, Y. Gai, K., Kwang, K., Choo. R.: Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 91, 527–535 (2019)

    Google Scholar 

  39. Cotton, H., Bolan, C.: User perceptions of end user license agreements in the smartphone environment. In: Australian Information Security Management Conference, pp 235–244 (2018)

    Google Scholar 

  40. Bubel, R., Hähnle, R., Geilmann, U.: A formalisation of java strings for program specification and verification. In: Software Engineering and Formal Methods

    Google Scholar 

  41. Tamir, D., Bruck, D.: Compression and Decompression Engines and Compressed Domain Processors, US Patent 10404277 (2019)

    Google Scholar 

Download references

Acknowledgment

This material is based in part upon work supported by the Department of Homeland Security grants TXST83938 and E2055778 and by the National Science Foundation under Grant CNS-2018611 and CNS-1920182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Tamir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, D., Yang, E., Shen, A., Tamir, D., Rishe, N. (2023). Fbereum: A Novel Distributed Ledger Technology System. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics