Skip to main content

Don’t Raise Your Voice, Improve Your Argument: Learning to Retrieve Convincing Arguments

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13981))

Included in the following conference series:

  • 2085 Accesses

Abstract

The Information Retrieval community has made strides in developing neural rankers, which have show strong retrieval effectiveness on large-scale gold standard datasets. The focus of existing neural rankers has primarily been on measuring the relevance of a document or passage to the user query. However, other considerations such as the convincingness of the content are not taken into account when retrieving content. We present a large gold standard dataset, referred to as CoRe, which focuses on enabling researchers to explore the integration of the concepts of convincingness and relevance to allow for the retrieval of relevant yet persuasive content. Through extensive experiments on this dataset, we report that there is a close association between convincingness and relevance that can have practical value in how convincing content are presented and retrieved in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Change my view (cmv) (2018). https://www.reddit.com/r/changemyview/wiki/deltasystem/

  2. Chakrabarty, T., Hidey, C., Muresan, S., McKeown, K., Hwang, A.: AMPERSAND: argument mining for PERSuAsive oNline discussions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2933–2943. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1291, https://aclanthology.org/D19-1291

  3. Cheng, L., Wu, T., Bing, L., Si, L.: Argument pair extraction via attention-guided multi-layer multi-cross encoding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6341–6353 (2021)

    Google Scholar 

  4. Dayter, D., Messerli, T.C.: Persuasive language and features of formality on the r/changemyview subreddit. Internet Pragmatics 5(1), 165–195 (2022)

    Article  Google Scholar 

  5. Dumani, L., Schenkel, R.: Quality-aware ranking of arguments. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 335–344 (2020)

    Google Scholar 

  6. Dutta, S., Das, D., Chakraborty, T.: Changing views: Persuasion modeling and argument extraction from online discussions. Inf. Process. Manage. 57(2), 102085 (2020)

    Article  Google Scholar 

  7. Gao, J., Xiong, C., Bennett, P., Craswell, N.: Neural approaches to conversational information retrieval. arXiv preprint arXiv:2201.05176 (2022)

  8. Habernal, I., Gurevych, I.: Which argument is more convincing? analyzing and predicting convincingness of web arguments using bidirectional lstm. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1589–1599 (2016)

    Google Scholar 

  9. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  10. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)

  11. Lin, J., Nogueira, R., Yates, A.: Pretrained transformers for text ranking: bert and beyond. Synth. Lect. Hum. Lang. Technol. 14(4), 1–325 (2021)

    Article  Google Scholar 

  12. Lugini, L., Litman, D.: Contextual argument component classification for class discussions. arXiv e-prints pp. arXiv-2102 (2021)

    Google Scholar 

  13. Maio, G.R., Hahn, U., Frost, J.M., Kuppens, T., Rehman, N., Kamble, S.: Social values as arguments: similar is convincing. Front. Psychol. 5, 829 (2014)

    Article  Google Scholar 

  14. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019)

  15. Simpson, E., Gurevych, I.: Finding convincing arguments using scalable bayesian preference learning. Trans. Assoc. Comput. Linguist. 6, 357–371 (2018)

    Article  Google Scholar 

  16. Stab, C., Gurevych, I.: Parsing argumentation structures in persuasive essays. Comput. Linguist. 43(3), 619–659 (2017)

    Article  MathSciNet  Google Scholar 

  17. Tan, C., Niculae, V., Danescu-Niculescu-Mizil, C., Lee, L.: Winning arguments: interaction dynamics and persuasion strategies in good-faith online discussions. In: Proceedings of the 25th International Conference on World Wide Web, pp. 613–624 (2016)

    Google Scholar 

  18. Trabelsi, A., Zaiane, O.R.: Finding arguing expressions of divergent viewpoints in online debates. In: Proceedings of the 5th Workshop on Language Analysis for Social Media (LASM), pp. 35–43 (2014)

    Google Scholar 

  19. Tran, N., Litman, D.: Multi-task learning in argument mining for persuasive online discussions. In: Proceedings of the 8th Workshop on Argument Mining, pp. 148–153 (2021)

    Google Scholar 

  20. Vecchi, E.M., Falk, N., Jundi, I., Lapesa, G.: Towards argument mining for social good: a survey. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1338–1352 (2021)

    Google Scholar 

  21. Wachsmuth, H., Stein, B., Ajjour, Y.: “Pagerank” for argument relevance. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 1117–1127 (2017)

    Google Scholar 

  22. Wei, Z., Liu, Y., Li, Y.: Is this post persuasive? ranking argumentative comments in online forum. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 195–200 (2016)

    Google Scholar 

  23. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. CoRR abs/2007.00808 (2020). https://arxiv.org/abs/2007.00808

  24. Yang, W., Zhang, H., Lin, J.: Simple applications of BERT for ad hoc document retrieval. CoRR abs/1903.10972 (2019). http://arxiv.org/abs/1903.10972

  25. Yu, S., Liu, Z., Xiong, C., Feng, T., Liu, Z.: Few-shot conversational dense retrieval. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 829–838 (2021)

    Google Scholar 

  26. Zeng, J., Li, J., He, Y., Gao, C., Lyu, M., King, I.: What Changed Your Mind: The Roles of Dynamic Topics and Discourse in Argumentation Process, p. 1502–1513. Association for Computing Machinery, New York, NY, USA (2020), https://doi.org/10.1145/3366423.3380223

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Salamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salamat, S., Arabzadeh, N., Bigdeli, A., Seyedsalehi, S., Zihayat, M., Bagheri, E. (2023). Don’t Raise Your Voice, Improve Your Argument: Learning to Retrieve Convincing Arguments. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13981. Springer, Cham. https://doi.org/10.1007/978-3-031-28238-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28238-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28237-9

  • Online ISBN: 978-3-031-28238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics