Skip to main content

IoT Platform for Monitoring Nutritional and Weather Conditions of Avocado Production

  • Conference paper
  • First Online:
Smart Cities ( ICSC-CITIES 2022)

Abstract

Agricultural productivity is crucial to supply the current food demand. However, food production requires facing technological challenges to achieve the level of demand production. In this context, Internet of Things technology is used for efficient farming processes. This article proposes an Internet of Things platform for collecting and processing soil nutrients and weather data of crop avocados in an orchard. Data were collected every 300 s for 24-h monitoring of the avocado trees. Experimental validation recorded 8 832 data for monitoring soil nutrients and weather variables of an avocado orchard in the Northeast of Morelos, Mexico. Results demonstrate that the proposed IoT platform can effectively monitor agriculture information in the context of smart farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, B., Garikapati, K., Yarlagadda, A., Dash, S.: Internet of things (IoT) and data analytics in smart agriculture: benefits and challenges. In: Abraham, A., Dash, S., Rodrigues, J., Acharya, B., Pani, S. (eds.) AI, Edge and IoT-based Smart Agriculture, pp. 3–16. Academic Press, Intelligent Data-Centric Systems (2022)

    Google Scholar 

  2. Ahmed, N., De, D., Hussain, I.: Internet of things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet Things J. 5(6), 4890–4899 (2018)

    Article  Google Scholar 

  3. Alves, R., et al.: A digital twin for smart farming. In: IEEE Global Humanitarian Technology Conference, pp. 1–4 (2019)

    Google Scholar 

  4. Bacco, M., Barsocchi, P., Ferro, E., Gotta, A., Ruggeri, M.: The digitisation of agriculture: a survey of research activities on smart farming. Array 3–4, 100009 (2019)

    Google Scholar 

  5. Bayá, G., Canale, E., Nesmachnow, S., Robledo, F., Sartor, P.: Production optimization in a grain facility through mixed-integer linear programming. Appl. Sci. 12(16), 8212 (2022)

    Article  Google Scholar 

  6. Bayá, G., Sartor, P., Robledo, F., Canale, E., Nesmachnow, S.: A case study of smart industry in Uruguay: Grain production facility optimization. In: Nesmachnow, S., Hernandez Callejo, L. (eds.) Smart Cities. ICSC-Cities 2021. CCIS, vol. 1555, pp. 101–115. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96753-6_8

  7. Bhardwaj, H., Pradeep, T., Aditi, S., Uttam, S.: Artificial intelligence and its applications in agriculture with the future of smart agriculture techniques. In: Pradeep, T., Kaur, G. (eds.) Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture, pp. 25–39. IGI Global (2021)

    Google Scholar 

  8. Colizzi, L., et al.: Introduction to agricultural IoT. In: Castrignano, A., Buttafuoco, G., Khosla, R., Mouazen, A., Moshou, D., Naud, O. (eds.) Agricultural Internet of Things and Decision Support for Precision Smart Farming, pp. 1–33. Academic Press (2020)

    Google Scholar 

  9. Garate, B., Díaz, S., Iturriaga, S., Nesmachnow, S., Shepelev, V., Tchernykh, A.: Autonomous swarm of low-cost commercial unmanned aerial vehicles for surveillance. Program. Comput. Softw. 47(8), 558–577 (2021)

    Article  Google Scholar 

  10. Maraseni, T., Cockfield, G.: Including the costs of water and greenhouse gas emissions in a reassessment of the profitability of irrigation. Agric. Water Manag. 103, 25–32 (2012)

    Article  Google Scholar 

  11. Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., Nillaor, P.: IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 156, 467–474 (2019)

    Article  Google Scholar 

  12. Navarro, E., Costa, N., Pereira, A.: A systematic review of IoT solutions for smart farming. Sensors 20(15), 4231 (2020)

    Google Scholar 

  13. Peña-López, I.: The Internet of things. Technical report, ITU Internet Reports (2005)

    Google Scholar 

  14. Pretty, J.: Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. 363, 447–465 (2008)

    Article  Google Scholar 

  15. Rossit, D.A., Toncovich, A., Rossit, D.G., Nesmachnow, S.: Flow shop scheduling problems in industry 4.0 production environments: missing operation case. In: Hussain, C.M., Di Sia, P. (eds.) Handbook of Smart Materials, Technologies, and Devices, pp. 1–23. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84205-5_71

  16. Safa, M.: Measuring and auditing on-farm energy use. In: Sims, R.E. (ed.) Energy-Smart Farming: Efficiency, Renewable Energy and Sustainability, pp. 8–35. Burleigh Dodds Science Publishing (2022)

    Google Scholar 

  17. Serikul, P., Nakpong, N., Nakjuatong, N.: Smart farm monitoring via the Blynk IoT platform: case study: humidity monitoring and data recording. In: 16\(^{th}\) International Conference on ICT and Knowledge Engineering, pp. 1–6 (2018)

    Google Scholar 

  18. Sethi, P., Sarangi, S.: Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 25–32 (2017)

    Google Scholar 

  19. Suhag, S., Singh, N., Jadaun, S., Johri, P., Shukla, A., Parashar, N.: IoT based soil nutrition and plant disease detection system for smart agriculture. In: 10\(^{th}\) IEEE International Conference on Communication Systems and Network Technologies, pp. 478–483 (2021)

    Google Scholar 

  20. Trilles, S., González-Pérez, A., Huerta, J.: An IoT platform based on microservices and serverless paradigms for smart farming purposes. Sensors 20(8), 2418 (2020)

    Google Scholar 

  21. United Nations Department of Economic and Social Affairs, Population Division: World population prospects 2022: Summary of results (2022)

    Google Scholar 

  22. Ustundag, A., Cevikcan, E.: Industry 4.0: Managing The Digital Transformation. SSAM, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57870-5

    Book  Google Scholar 

  23. Vermesan, O., et al.: Internet of things strategic research roadmap. In: Internet of Things - Global Technological and Societal Trends, vol. 1, pp. 9–52 (2011)

    Google Scholar 

Download references

Acknowledgements

This work acknowledges Salomon Paul Arizmendi Muñoz, owner of the orchard “La Ceiba”, for the attention and facilities provided in the development of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Moreno-Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreno-Bernal, P., Arizmendi-Peralta, P., Hernández-Aguilar, J.A., del Carmen Peralta-Abarca, J., Velásquez-Aguilar, J.G. (2023). IoT Platform for Monitoring Nutritional and Weather Conditions of Avocado Production. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022. Communications in Computer and Information Science, vol 1706. Springer, Cham. https://doi.org/10.1007/978-3-031-28454-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28454-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28453-3

  • Online ISBN: 978-3-031-28454-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics