Skip to main content

Gait Phase Detection on Level and Inclined Surfaces for Human Beings with an Orthosis and Humanoid Robots

  • Conference paper
  • First Online:
RoboCup 2022: Robot World Cup XXV (RoboCup 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13561))

Included in the following conference series:

  • 427 Accesses

Abstract

In this paper, we propose an approach for gait phase detection for flat and inclined surfaces that can be used for an ankle-foot orthosis and the humanoid robot Sweaty. To cover different use cases, we use a rule-based algorithm. This offers the required flexibility and real-time capability. The inputs of the algorithm are inertial measurement unit and ankle joint angle signals. We show that the gait phases with the orthosis worn by a human participant and with Sweaty are reliably recognized by the algorithm under the condition of adapted transition conditions. E.g., the specificity for human gait on flat surfaces is 92 %. For the robot Sweaty, 95 % results in fully recognized gait cycles. Furthermore, the algorithm also allows the determination of the inclination angle of the ramp. The sensors of the orthosis provide 6.9\(^\circ \) and that of the robot Sweaty 7.7\(^\circ \) when walking onto the reference ramp with slope angle 7.9\(^\circ \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agostini, V., Ghislieri, M., Rosati, S., Balestra, G., Knaflitz, M.: Surface electromyography applied to gait analysis: how to improve its impact in clinics? Front. Neurol. 11, 994 (2020). https://doi.org/10.3389/fneur.2020.00994

    Article  Google Scholar 

  2. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 12(1), 24–31 (2004). https://doi.org/10.1109/TNSRE.2003.823266

    Article  Google Scholar 

  3. Feuvrier, F., Sijobert, B., Azevedo, C., Griffiths, K., Alonso, S., Dupeyron, A., Laffont, I., Froger, J.: Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome. Ann. Phys. Rehabil. Med. 63, 195–201 (2019). https://doi.org/10.1016/j.rehab.2019.03.007

    Article  Google Scholar 

  4. Huang, L., Zheng, J., Hu, H.: A gait phase detection method in complex environment based on DTW-mean templates. IEEE Sens. J. 21(13), 15114–15123 (2021). https://doi.org/10.1109/JSEN.2021.3072102

    Article  Google Scholar 

  5. Islam, M., Hsiao-Wecksler, E.T.: Detection of gait modes using an artificial neural network during walking with a powered ankle-foot orthosis. J. Biophys. (2016). https://doi.org/10.1155/2016/7984157

    Article  Google Scholar 

  6. Kim, S.K., Hong, S., Kim, D.: A walking motion imitation framework of a humanoid robot by human walking recognition from IMU motion data. In: 2009 9th IEEE-RAS International Conference on Humanoid Robots, pp. 343–348. IEEE (07122009–10122009). https://doi.org/10.1109/ICHR.2009.5379552

  7. Mannini, A., Genovese, V., Maria Sabatini, A.: Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes. IEEE J. Biomed. Health Inform. 18(4), 1122–1130 (2014). https://doi.org/10.1109/JBHI.2013.2293887

    Article  Google Scholar 

  8. Pappas, I.P., Popovic, M.R., Keller, T., Dietz, V., Morari, M.: A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 9(2), 113–125 (2001). https://doi.org/10.1109/7333.928571

    Article  Google Scholar 

  9. Pham, M.H., et al.: Validation of a step detection algorithm during straight walking and turning in patients with Parkinson’s disease and older adults using an inertial measurement unit at the lower back. Front. Neurol. 8, 457 (2017). https://doi.org/10.3389/fneur.2017.00457

    Article  Google Scholar 

  10. Sánchez Manchola, M.D., Bernal, M.J.P., Munera, M., Cifuentes, C.A.: Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals. Sensors (Basel, Switzerland) 19, 2988 (2019). https://doi.org/10.3390/s19132988

  11. Sarshar, M., Polturi, S., Schega, L.: Gait phase estimation by using LSTM in IMU-based gait analysis-proof of concept. Sensors (Basel, Switzerland) 21, 5749 (2021). https://doi.org/10.3390/s21175749

  12. Sijobert, B., Feuvrier, F., Froger, J., Guiraud, D., Coste, C.A.: A sensor fusion approach for inertial sensors based 3D kinematics and pathological gait assessments: toward an adaptive control of stimulation in post-stroke subjects. In: EMBC: Engineering in Medicine and Biology (2018). https://doi.org/10.1109/EMBC.2018.8512985

  13. Taborri, J., Palermo, E., Rossi, S., Cappa, P.: Gait partitioning methods: a systematic review. Sensors (Basel, Switzerland) 16, 66 (2016). https://doi.org/10.3390/s16010066

  14. Vu, H.T.T., et al.: A review of gait phase detection algorithms for lower limb prostheses. Sensors (Basel, Switzerland) 20 (2020). https://doi.org/10.3390/s20143972

Download references

Acknowledgment

Special thanks to Seifert Technical Orthopaedics for their support in the field of orthosis and for the possibility to do the trials with the participants. The research work on the orthosis was financed by the Federal Ministry of Economic Affairs and Climate Action of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Gießler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gießler, M., Breig, M., Wolf, V., Schnekenburger, F., Hochberg, U., Willwacher, S. (2023). Gait Phase Detection on Level and Inclined Surfaces for Human Beings with an Orthosis and Humanoid Robots. In: Eguchi, A., Lau, N., Paetzel-Prüsmann, M., Wanichanon, T. (eds) RoboCup 2022: Robot World Cup XXV. RoboCup 2022. Lecture Notes in Computer Science(), vol 13561. Springer, Cham. https://doi.org/10.1007/978-3-031-28469-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28469-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28468-7

  • Online ISBN: 978-3-031-28469-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics