Skip to main content

Object Tracking for the Rotating Table Test

  • Conference paper
  • First Online:
RoboCup 2022: Robot World Cup XXV (RoboCup 2022)

Abstract

In the RoboCup@Work competition, the Rotating Table Test problem refers to the task of automatically grasping an object from a circular table, rotating at constant angular velocity. This task requires the robot to track the target object’s position and grasp it. In this work, we propose a camera-based online tracking system which works in real-time. Our approach is based on the YOLOv5 detection backbone and uses a novel, modified version of the SORT tracker. The tracker is trained solely on a pre-existing detection dataset containing annotated static images, thanks to which the collection of additional situation-specific video data is not required. We evaluate and compare SORT with YOLOv5 and SqueezeDet backbones and demonstrate the improvement in tracking performance when using the former. The evaluation dataset and corresponding annotations are made available for use in the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/VincentSch4rf/rtt_tracking

  2. 2.

    https://github.com/VincentSch4rf/RoboCup-RTT-Dataset

References

  1. Bartsch, L., et al.: RoboCup@Work 2022 - Rulebook (2022). https://atwork.robocup.org/rules/

  2. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. In: IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Google Scholar 

  3. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: International Conference on Computer Vision, pp. 941–951 (2019)

    Google Scholar 

  4. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear MOT metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

  5. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: International Conference on Image Processing, pp. 3464–3468. IEEE (2016)

    Google Scholar 

  6. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  7. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934 (2020)

  8. Ciaparrone, G., Sánchez, F.L., Tabik, S., Troiano, L., Tagliaferri, R., Herrera, F.: Deep learning in video multi-object tracking: a survey. Neurocomputing 381, 61–88 (2020)

    Article  Google Scholar 

  9. Jiang, H., Fels, S., Little, J.J.: A linear programming approach for multiple object tracking. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  10. Jocher, G., et al.: ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference (2022)

    Google Scholar 

  11. Kraetzschmar, G.K., et al.: RoboCup@Work: competing for the factory of the future. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 171–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3_14

    Chapter  Google Scholar 

  12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  13. Leal-Taixé, L.: Multiple object tracking with context awareness. arXiv preprint arXiv:1411.7935 (2014)

  14. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  15. Padalkar, A., et al.: b-it-bots: our approach for autonomous robotics in industrial environments. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 591–602. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_48

    Chapter  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2016)

    Google Scholar 

  20. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  21. Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: Conference on Computer Vision and Pattern Recognition, pp. 6036–6046 (2018)

    Google Scholar 

  22. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet: a new backbone that can enhance learning capability of CNN. In: Conference on Computer vision and Pattern Recognition Workshops, pp. 390–391 (2020)

    Google Scholar 

  23. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: International Conference on Image Processing, pp. 3645–3649. IEEE (2017)

    Google Scholar 

  24. Wu, B., Forrest, I., Peter H, J., Keutzer, K.: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–137 (2017)

    Google Scholar 

  25. Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on static body part detection. In: Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2006)

    Google Scholar 

  26. Yang, F., Choi, W., Lin, Y.: Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2016)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the continued support by the b-it Bonn-Aachen International Center for Information Technology and Hochschule Bonn-Rhein-Sieg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincent Scharf , Ibrahim Shakir Syed , Michał Stolarz , Mihir Mehta or Sebastian Houben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scharf, V., Syed, I.S., Stolarz, M., Mehta, M., Houben, S. (2023). Object Tracking for the Rotating Table Test. In: Eguchi, A., Lau, N., Paetzel-Prüsmann, M., Wanichanon, T. (eds) RoboCup 2022: Robot World Cup XXV. RoboCup 2022. Lecture Notes in Computer Science(), vol 13561. Springer, Cham. https://doi.org/10.1007/978-3-031-28469-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28469-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28468-7

  • Online ISBN: 978-3-031-28469-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics