Skip to main content

Evaluation of the ProgHW/SW Architectural Design Space of Bandwidth Estimation

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13882))

Included in the following conference series:

  • 1561 Accesses

Abstract

Bandwidth estimation (BWE) is a fundamental functionality in congestion control, load balancing, and many network applications. Therefore, researchers have conducted numerous BWE evaluations to improve its estimation accuracy. Most current evaluations focus on the algorithmic aspects or network conditions of BWE. However, as the architectural aspects of BWE gradually become the bottleneck in multi-gigabit networks, many solutions derived from current works fail to provide satisfactory performance. In contrast, this paper focuses on the architectural aspects of BWE in the current trend of programmable hardware (ProgHW) and software (SW) co-designs. Our work makes several new findings to improve BWE accuracy from the architectural perspective. For instance, we show that offloading components that can directly affect inter-packet delay (IPD) is an effective way to improve BWE accuracy. In addition, to handle the architectural deployment difficulty not appeared in past studies, we propose a modularization method to increase evaluation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AXI Reference Guide (2020). https://www.xilinx.com/support/ documentation/ip_documentation/ug761_axi_reference_guide.pdf

  2. Alveo U280 Product Brief (2021). https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

  3. Apache Hadoop (2021). https://hadoop.apache.org/

  4. AWS High Performance Computing (2021). https://aws.amazon.com/hpc/

  5. Intel. Intel DPDK: Data Plane Development Kit (2021). https://dpdk.org/

  6. Lookbusy - a synthetic load generator (2021). https://www.devin.com/lookbusy/

  7. TCP/IP Socket Opencores (2021). https://opencores.org/projects/tcp_socket

  8. Vitis with 100 Gbps TCP/IP Network Stack (2022). https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP

  9. FPGABandwidth (2023). https://github.com/ftqtfff/FPGABandwidth

  10. Aceto, G., Botta, A., Pescapé, A., D’Arienzo, M.: Unified architecture for network measurement: the case of available bandwidth. J. Netw. Comput. Appl. 35(5), 1402–1414 (2012)

    Article  Google Scholar 

  11. Aloisio, A., Giordano, R., Izzo, V.: Jitter issues in clock conditioning with fpgas. In: NPSS Real Time Conference, pp. 1–6. IEEE (2010)

    Google Scholar 

  12. Botta, A., Dainotti, A., Pescapé, A.: Do you trust your software-based traffic generator? IEEE Commun. Maga. 48(9), 158–165 (2010)

    Article  Google Scholar 

  13. Carter, R.L., Crovella, M.E.: Measuring bottleneck link speed in packet-switched networks. Perf. Eval. 27, 297–318 (1996)

    Article  Google Scholar 

  14. Chou, P.A., Miao, Z.: Rate-distortion optimized streaming of packetized media. IEEE Trans. Multimedia 8(2), 390–404 (2006)

    Article  Google Scholar 

  15. Chowdhury, D.D.: Packet timing: network time protocol. In: NextGen Network Synchronization, pp. 103–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71179-5_7

    Chapter  Google Scholar 

  16. Covington, G.A., Gibb, G., Lockwood, J.W., McKeown, N.: A packet generator on the NetFPGA platform. In: The 17th IEEE Symposium on Field Programmable Custom Computing Machines, pp. 235–238 (2009)

    Google Scholar 

  17. Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., Carle, G.: Moongen: a scriptable high-speed packet generator. In: Proceedings of the 2015 Internet Measurement Conference, pp. 275–287 (2015)

    Google Scholar 

  18. Firestone, D., et al.: Azure accelerated networking: SmartNICs in the public cloud. In: The 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 51–66 (2018)

    Google Scholar 

  19. Ghobadi, M., Salmon, G., Ganjali, Y., Labrecque, M., Steffan, J.G.: Caliper: precise and responsive traffic generator. In: The 20th Annual Symposium on High-Performance Interconnects, pp. 25–32. IEEE (2012)

    Google Scholar 

  20. Groleat, T., et al.: Flexible, extensible, open-source and affordable FPGA-based traffic generator. In: Proceedings of the 1st Edition Workshop on High Performance and Programmable Networking, pp. 23–30 (2013)

    Google Scholar 

  21. Haecki, R., et al.: How to diagnose nanosecond network latencies in rich end-host stacks. In: USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 861–877 (2022)

    Google Scholar 

  22. Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth probing techniques. IEEE J. Sel. Areas Commun. 21(6), 879–894 (2003)

    Article  Google Scholar 

  23. Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP Throughput. ACM SIGCOMM Comput. Commun. Rev. 32(4), 295–308 (2002)

    Article  Google Scholar 

  24. Jin, G., Tierney, B.: Netest: a tool to measure the maximum burst size, available bandwidth and achievable throughput. In: International Conference on Information Technology: Research and Education (ITRE), pp. 578–582. IEEE (2003)

    Google Scholar 

  25. Jin, G., Tierney, B.L.: System capability effects on algorithms for network bandwidth measurement. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 27–38 (2003)

    Google Scholar 

  26. Kagami, N.S., da Costa Filho, R.I.T., Gaspary, L.P.: CAPEST: offloading network capacity and available bandwidth estimation to programmable data planes. IEEE Trans. Netw. Serv. Manag. 17(1), 175–189 (2019)

    Google Scholar 

  27. LaCurts, K., Deng, S., Goyal, A., Balakrishnan, H.: Choreo: network-aware task placement for cloud applications. In: Proceedings of the Conference on Internet Measurement Conference, pp. 191–204 (2013)

    Google Scholar 

  28. Larsen, S., Sarangam, P., Huggahalli, R., Kulkarni, S.: Architectural breakdown of end-to-end latency in a TCP/IP network. Int. J. Parallel Program. 37(6), 556–571 (2009)

    Article  MATH  Google Scholar 

  29. Lee, K.S., Wang, H., Weatherspoon, H.: Sonic: precise realtime software access and control of wired networks. In: USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 213–225 (2013)

    Google Scholar 

  30. Leeser, M., Handagala, S., Zink, M.: FPGAs in the Cloud. Authorea (2021). https://doi.org/10.22541/au.163647170.02504770/v1

  31. Li, Y., et al.: HPCC: high precision congestion control. In: Proceedings of the ACM Special Interest Group on Data Communication, pp. 44–58. Association for Computing Machinery (2019)

    Google Scholar 

  32. Liao, G., Znu, X., Bnuyan, L.: A new server I/O architecture for high speed networks. In: The 17th International Symposium on High Performance Computer Architecture, pp. 255–265. IEEE (2011)

    Google Scholar 

  33. Lin, W., Liang, C., Wang, J.Z., Buyya, R.: Bandwidth-aware divisible task scheduling for cloud computing. Softw. Pract. Exp. 44(2), 163–174 (2014)

    Article  Google Scholar 

  34. Liu, X., Ravindran, K., Loguinov, D.: Evaluating the potential of bandwidth estimators. In: The 4th New York Metro Area Networking Workshop (NYMAN) (2004)

    Google Scholar 

  35. Moreno, V., del Rio, P.M.S., Ramos, J., Garnica, J.J., Garcia-Dorado, J.L.: Batch to the future: analyzing timestamp accuracy of high-performance packet I/O engines. IEEE Commun. Lett. 16(11), 1888–1891 (2012)

    Article  Google Scholar 

  36. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter services. In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp. 13–24 (2014)

    Google Scholar 

  37. Ramos, J., del Río, P.S., Aracil, J., de Vergara, J.L.: On the effect of concurrent applications in bandwidth measurement speedometers. Comput. Netw. 55(6), 1435–1453 (2011)

    Article  Google Scholar 

  38. Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., Navratil, J., Cottrell, L.: Pathchirp: efficient available bandwidth estimation for network paths. In: Passive and Active Measurement Workshop (2003)

    Google Scholar 

  39. Ruiz, M., Sidler, D., Sutter, G., Alonso, G., López-Buedo, S.: Limago: an FPGA-based open-source 100 GbE TCP/IP stack. In: International Conference on Field Programmable Logic and Applications (FPL), pp. 286–292. IEEE (2019)

    Google Scholar 

  40. Salmon, G., Ghobadi, M., Ganjali, Y., Labrecque, M., Steffan, J.G.: NetFPGA-based precise traffic generation. In: Proceedings of NetFPGA Developers Workshop, vol. 9. Citeseer (2009)

    Google Scholar 

  41. Shriram, A., Kaur, J.: Empirical evaluation of techniques for measuring available bandwidth. In: International Conference on Computer Communications (INFOCOM), pp. 2162–2170. IEEE (2007)

    Google Scholar 

  42. Shriram, A., et al.: Comparison of public end-to-end bandwidth estimation tools on high-speed links. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 306–320. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31966-5_24

    Chapter  Google Scholar 

  43. Skhiri, R., Fresse, V., Jamont, J.P., Suffran, B., Malek, J.: From FPGA to support cloud to cloud of FPGA: state of the art. Int. J. Reconfig. Comput. 2019 (2019)

    Google Scholar 

  44. Sommers, J., Barford, P., Willinger, W.: Laboratory-based calibration of available bandwidth estimation tools. Microprocess. Microsyst. 31(4), 222–235 (2007)

    Article  Google Scholar 

  45. Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth estimation tools. In: Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, pp. 39–44 (2003)

    Google Scholar 

  46. Wang, H., Lee, K.S., Li, E., Lim, C.L., Tang, A., Weatherspoon, H.: Timing is everything: accurate, minimum overhead, available bandwidth estimation in high-speed wired networks. In: Proceedings of the 2014 Conference on Internet Measurement Conference, pp. 407–420 (2014)

    Google Scholar 

  47. Yasukata, K., Honda, M., Santry, D., Eggert, L.: Stackmap: low-latency networking with the OS stack and dedicated NICs. In: USENIX Annual Technical Conference (USENIX ATC 2016), pp. 43–56 (2016)

    Google Scholar 

  48. Yin, Q., Kaur, J., Smith, F.D.: Can bandwidth estimation tackle noise at ultra-high speeds? In: IEEE 22nd International Conference on Network Protocols, pp. 107–118 (2014)

    Google Scholar 

  49. Zhou, H., Wang, Y., Wang, X., Huai, X.: Difficulties in estimating available bandwidth. In: International Conference on Communications, vol. 2, pp. 704–709. IEEE (2006)

    Google Scholar 

  50. Zilberman, N., Audzevich, Y., Covington, G.A., Moore, A.W.: NetFPGA SUME: toward 100 Gbps as research commodity. IEEE Micro 34(5), 32–41 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The work presented in this paper was supported in part by NSF CNS-1616087 and CNS-2135539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqi Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, T., Xu, L., Srisa-an, W., Patel, J. (2023). Evaluation of the ProgHW/SW Architectural Design Space of Bandwidth Estimation. In: Brunstrom, A., Flores, M., Fiore, M. (eds) Passive and Active Measurement. PAM 2023. Lecture Notes in Computer Science, vol 13882. Springer, Cham. https://doi.org/10.1007/978-3-031-28486-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28486-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28485-4

  • Online ISBN: 978-3-031-28486-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics