Skip to main content

DeBic: A Differential Evolution Biclustering Algorithm for Microarray Data Analysis

  • Conference paper
  • First Online:
Artificial Intelligence: Theories and Applications (ICAITA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1769))

  • 275 Accesses

Abstract

Biclustering is one of the interesting topics in bioinformatics and one of the crucial approaches to extracting meaningful information from data and performing high-dimensional analysis for gene expression data. However, since the colossal space complexity and the nature of the problem are proven to be NP-Hard, an approach to identifying valuable biclusters with a good quality measure is required in a reasonable amount of time. Moreover, metaheuristics and evolutionary computation algorithms have shown incredible success in this area. This paper offers a novel method of a Differential Evolution Based Biclustering algorithm to extract Biclusters called DeBic. The results of the experiments on the popular Yeast Cell-Cycle dataset indicate unique and interesting biclusters getting discovered with larger sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Georgioudakis, M., Plevris, V.: A Comparative study of differential evolution variants in constrained structural optimization. Front. Built Environ. 6, 102 (2020). https://doi.org/10.3389/fbuil.2020.00102

    Article  Google Scholar 

  2. Jose-Garcia, A., Jacques, J., Sobanski, V., Dhaenens, C.: Biclustering algorithms based on metaheuristics: a review. ArXiv:2203.16241 [Cs]. http://arxiv.org/abs/2203.16241 (2022)

  3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: International Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  4. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biology Bioinf. 1(1), 24–45 (2004). https://doi.org/10.1109/TCBB.2004.2

    Article  Google Scholar 

  5. Noronha, M.D.M., Henriques, R., Madeira, S.C., Zárate, L.E.: Impact of metrics on biclustering solution and quality: a review. Pattern Recogn. 127, 108612 (2022). https://doi.org/10.1016/j.patcog.2022.108612

    Article  Google Scholar 

  6. Mandal, K., Sarmah, R., Bhattacharyya, D.K.: POPBic: Pathway-Based Order Preserving Biclustering Algorithm Towards the Analysis of Gene Expression Data. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 18, no. 6, pp. 2659–2670, 1 Nov.–Dec. 2021. https://doi.org/10.1109/TCBB.2020.2980816

  7. Maâtouk, O., Ayadi, W., Bouziri, H., Duval, B.: Evolutionary local search algorithm for the biclustering of gene expression data based on biological knowledge. Appl. Soft Comput. 104, 107177 (2021). https://doi.org/10.1016/j.asoc.2021.107177

    Article  Google Scholar 

  8. Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006). https://doi.org/10.1093/bioinformatics/btl060

  9. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (Jun2003). https://doi.org/10.1089/10665270360688075

    Article  Google Scholar 

  10. Ayadi, W., Elloumi, M., Hao, J.-K.: BicFinder: a biclustering algorithm for microarray data analysis. Knowl. Inf. Syst. 30(2), 341–358 (2012). https://doi.org/10.1007/s10115-011-0383-7

    Article  Google Scholar 

  11. Ayadi, W., Elloumi, M., Hao, J.K.: A biclustering algorithm based on a bicluster enumeration tree: application to DNA microarray data. BioData Min. 16(2), 9 (2009). https://doi.org/10.1186/1756-0381-2-9

    Article  Google Scholar 

  12. Ayadi, W., Elloumi, M., Hao, J.K.: BiMine+: an efficient algorithm for discovering relevant biclusters of DNA microarray data. Knowl. Based Syst. 35, 224–234 (2012). ISSN 0950 705. https://doi.org/10.1016/j.knosys.2012.04.017

  13. Serin, A., Vingron, M.: DeBi: discovering differentially expressed biclusters using a frequent itemset approach. Algorithms Mol. Biol. 6(1), 18 (2011). https://doi.org/10.1186/1748-7188-6-18

    Article  Google Scholar 

  14. Ayadi, W., Elloumi, M., Hao, J. K.: Pattern-driven neighborhood search for Biclustering of microarray data. BMC Bioinform. 13(7), 1–11 (2012). BioMed Central

    Google Scholar 

  15. Maâtouk, O., Ayadi, W., Bouziri, H., Duval, B.: Local search method based on biological knowledge for the Biclustering of gene expression data. Adv. Smart Syst. Res. 6(2), 65 (2012)

    Google Scholar 

  16. Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Trans. Knowl. Data Eng. 18(5), 590602 (2006). https://doi.org/10.1109/TKDE.2006.74

    Article  Google Scholar 

  17. Divina, F., Aguilar-Ruiz, J.S.: A multi-objective approach to discover biclusters in microarray data. In: Genetic and Evolutionary Computation Conference – GECCO ’07, p. 385. ACM Press (2007). https://doi.org/10.1145/1276958.1277038

  18. Huang, Q., Tao, D., Li, X., Liew, A.: Parallelized evolutionary learning for detection of biclusters in gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(2), 560–570 (2012). https://doi.org/10.1109/TCBB.2011.53

  19. Nepomuceno, J.A., Troncoso, A., Nepomuceno-Chamorro, I.A., Aguilar-Ruiz, J.S.: Integrating biological knowledge based on functional annotations for Biclustering of gene expression data. Comput. Meth. Prog. Biomed. 119(3), 163–180 (2015). https://doi.org/10.1016/j.cmpb.2015.02.010

    Article  Google Scholar 

  20. Nepomuceno, J.A., Troncoso, A., Nepomuceno-Chamorro, I.A., Aguilar-Ruiz, J.S.: Pairwise gene GO-based measures for Biclustering of high-dimensional expression data. BioData Mining 11(1), 4 (2018). https://doi.org/10.1186/s13040-018-0165-9

    Article  Google Scholar 

  21. Nepomuceno, J.A., Troncoso, A., Aguilar-Ruiz, J.S.: Biclustering of gene expression data by correlation-based scatter search. BioData Mining 4(1), 3 (2011). https://doi.org/10.1186/1756-0381-4-3

    Article  Google Scholar 

  22. Gallo, C.A., Carballido, J.A., Ponzoni, I.: BiHEA: a hybrid evolutionary approach for microarray biclustering. In: Brazilian Symposium on Bioinformatics, pp. 36–47 (2009). https://doi.org/10.1007/978-3-642-03223-3_4

  23. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  24. Deng, C., Zhao, B., Yang, Y., Zhang, H.: Binary encoding differential evolution for combinatorial optimization problems. Int. J. Educ. Manage. Eng. 1(3), 59–66 (2011). https://doi.org/10.5815/ijeme.2011.03.09

    Article  Google Scholar 

  25. Hegerty, B., Hung, C.C., Kasprak, K.: A comparative study on differential evolution and genetic algorithms for some combinatorial problems. In: Proceedings of 8th Mexican international conference on artificial intelligence, vol. 9, p. 13 (2009)

    Google Scholar 

  26. Iwan, M., Akmeliawati, R., Faisal, T., Al-Assadi, T.M.A.A.: Performance comparison of differential evolution and particle swarm optimization in constrained optimization. Proc. Eng. 41, 1323–1328 (2012). ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2012.07.317

  27. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognit. 39(12), 2464–2477 (2006). https://doi.org/10.1016/j.patcog.2006.03.003

    Article  MATH  Google Scholar 

  28. Sahu, U., John, A., Alphonso, A., Kamath, A., Tripathy, A.: Cancer detection using biclustering. In: International Conference on Computer Communication and Informatics, 2013, pp. 1–5. https://doi.org/10.1109/ICCCI.2013.6466145

  29. Xie, J., Ma, A., Fennell, A., Ma, Q., Zhao, J.: It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data. Brief. Bioinform. 20(4), 1450–1465 (2019). https://doi.org/10.1093/bib/bby014

    Article  Google Scholar 

  30. Charalampakis, A.E., Tsiatas, G.C.: Critical evaluation of metaheuristic algorithms for weight minimization of truss structures. Front. Built Environ. (2019). https://doi.org/10.3389/fbuil.2019.00113

    Article  Google Scholar 

  31. Yang, J., Wang, H., Wang, W., Yu, P.: Enhanced biclustering on expression data. In: Third IEEE Symposium on Bioinformatics and Bioengineering, Proceedings 2003, pp. 321–327. https://doi.org/10.1109/BIBE.2003.1188969

  32. Tasgetiren, M., Liang, Y.-C., Gencyilmaz, G., Eker, I.: A differential evolution algorithm for continuous function optimization (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Charfaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charfaoui, Y., Houari, A., Boufera, F. (2023). DeBic: A Differential Evolution Biclustering Algorithm for Microarray Data Analysis. In: Salem, M., Merelo, J.J., Siarry, P., Bachir Bouiadjra, R., Debakla, M., Debbat, F. (eds) Artificial Intelligence: Theories and Applications. ICAITA 2022. Communications in Computer and Information Science, vol 1769. Springer, Cham. https://doi.org/10.1007/978-3-031-28540-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28540-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28539-4

  • Online ISBN: 978-3-031-28540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics