Skip to main content

Next Generation Mobile Sensors: Review Regarding the Significance of Deep Learning and Privacy Techniques for Data-Driven Soft Sensors

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 655))

  • 630 Accesses

Abstract

The increasing usage of mobile devices amounts to around 6.8 billion by 2022. This implies a substantial increase in the quantity of personal data that are managed. The paper surveys the most relevant contributions that pertain to human activity, behavioural patterns detection, demographics, health and body parameters. Moreover, significant aspects regarding data privacy are also analyzed. The paper also defines relevant research questions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rajkumar, N., Kannan, E.: Attribute-based collusion resistance in group-based cloud data sharing using LKH model. J. Circ. Syst. Comput. 29(02), 2030001 (2020)

    Article  Google Scholar 

  2. Tolosana, R., et al.: Child-computer interaction: recent works, new dataset, and age detection. arXiv (2021)

    Google Scholar 

  3. Abuhamad, M., Abusnaina, A., Nyang, D., Mohaisen, D.: Sensor-based continuous authentication of smartphones’ users using behavioral biometrics: a contemporary survey. arXiv. (2020)

    Google Scholar 

  4. Hussain, A., et al.: Security framework for IOT based real-time health applications. Electronics 10(6), 719 (2021)

    Article  Google Scholar 

  5. Ellavarason, E., Guest, R., Deravi, F., Sanchez-Riello, R., Corsetti, B.: Touch-dynamics based behavioural biometrics on mobile devices-a review from a usability and performance perspective. ACM Comput. Surv. (CSUR) 53(6), 1–36 (2020)

    Article  Google Scholar 

  6. General Data Protection Regulation (2022). https://gdprinfo.eu/ro

  7. Aljeraisy, A., Barati, M., Rana, O., Perera, C.: Privacy laws and privacy by design schemes for the Internet of Things: a developer’s perspective. ACM Comput. Surv. 54(5), 1–38 (2021). Article 102

    Article  Google Scholar 

  8. Barth, S., de Jong, M.D.T., Junger, M., Hartel, P.H., Roppelt, J.C.: Putting the privacy paradox to the test: online privacy and security behaviors among users with technical knowledge, privacy awareness, and financial resources. Telematics Inform. 41, 55–69 (2019)

    Article  Google Scholar 

  9. European Commission: PriMa: Privacy Matters, H2020-MSCA-ITN-2019-860315 (2022). https://www.prima-itn.eu/

  10. European Commission: TReSPAsS-ETN: TRaining in Secure and PrivAcy-preserving biometricS, H2020-MSCAITN-2019-860813 (2022). https://www.trespass-etn.eu/

  11. Labati, R.D., Piuri, V., Scotti, F.: Biometric privacy protection: guidelines and technologies. In: Obaidat, M.S., Sevillano, J.L., Filipe, J. (eds.) ICETE 2011. CCIS, vol. 314, pp. 3–19. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35755-8_1

    Chapter  Google Scholar 

  12. Davarci, E., Soysal, B., Erguler, I., Aydin, S.O., Dincer, O., Anarim, E.: Age group detection using smartphone motion sensors. In: Proceedings of the European Signal Processing Conference (2017)

    Google Scholar 

  13. Nguyen, T., Roy, A., Memon, N.: Kid on the phone! Toward automatic detection of children on mobile devices. Comput. Secur. 84, 334–348 (2019)

    Article  Google Scholar 

  14. Jain, A., Kanhangad, V.: Investigating gender recognition in smartphones using accelerometer and gyroscope sensor readings. In: Proceedings of the International Conference on Computational Techniques in Information and Communication Technologies (2016)

    Google Scholar 

  15. Meena, T., Sarawadekar, K.: Gender recognition using in-built inertial sensors of smartphone. In: Proceedings of the IEEE Region 10 Conference, pp. 462–467 (2020)

    Google Scholar 

  16. Singh, S., Shila, D.M., Kaiser, G.: Side channel attack on smartphone sensors to infer gender of the user: poster abstract. In: Proceedings of the Conference on Embedded Networked Sensor Systems, pp. 436–437 (2019)

    Google Scholar 

  17. Ngo, T.T., et al.: OU-ISIR wearable sensor-based gait challenge: age and gender. In: Proceedings of the International Conference on Biometrics (2019)

    Google Scholar 

  18. Sabir, A., Maghdid, H., Asaad, S., Ahmed, M., Asaad, A.: Gait-based gender classification using smartphone accelerometer sensor. In: Proceedings of the International Conference on Frontiers of Signal Processing, pp. 12–20 (2019)

    Google Scholar 

  19. Acien, A., Morales, A., Fierrez, J., Vera-Rodriguez, R., Hernandez-Ortega, J.: Active detection of age groups based on touch interaction. IET Biom. 8(1), 101–108 (2019)

    Article  Google Scholar 

  20. Miguel-Hurtado, O., Stevenage, S., Bevan, C., Guest, R.: Predicting sex as a soft-biometrics from device interaction swipe gestures. Pattern Recogn. Lett. 79, 44–51 (2016)

    Article  Google Scholar 

  21. Jain, A., Kanhangad, V.: Gender recognition in smartphones using touchscreen gestures. Pattern Recogn. Lett. 125, 604–611 (2019)

    Article  Google Scholar 

  22. Almaatouq, A., Prieto-Castrillo, F., Pentland, A.: Mobile communication signatures of unemployment. In: Spiro, E., Ahn, Y.-Y. (eds.) SocInfo 2016. LNCS, vol. 10046, pp. 407–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47880-7_25

    Chapter  Google Scholar 

  23. Yuan, Y., Raubal, M., Liu, Y.: Correlating mobile phone usage and travel behavior-a case study of Harbin, China. Comput. Environ. Urban Syst. 36(2), 118–130 (2012)

    Article  Google Scholar 

  24. Scherrer, L., Tomko, M., Ranacher, P., Weibel, R.: Travelers or locals? Identifying meaningful sub-populations from human movement data in the absence of ground truth. EPJ Data Sci. 7(1), 1–21 (2018). https://doi.org/10.1140/epjds/s13688-018-0147-7

    Article  Google Scholar 

  25. Riederer, C., Zimmeck, S., Phanord, C., Chaintreau, A., Bellovin, S.: I don’t have a photograph, but you can have my footprints. Revealing the demographics of location data. In: Proceedings of the ACM on Conference on Online Social Networks, pp. 185–195 (2015)

    Google Scholar 

  26. Wu, L., et al.: Inferring demographics from human trajectories and geographical context. Comput. Environ. Urban Syst. 77(2019), 101368 (2019)

    Article  Google Scholar 

  27. The eXtreme Gradient Boosting library (2022). https://xgboost.ai/about

  28. Neal, T., Woodard, D.: A gender-specific behavioral analysis of mobile device usage data. In: Proceedings of the International Conference on Identity, Security, and Behavior Analysis, pp. 1–8 (2018)

    Google Scholar 

  29. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities. ACM Comput. Surv. 54(4), 1–40 (2021). https://doi.org/10.1145/3447744. Article 77

    Article  Google Scholar 

  30. Sun, L., Zhang, D., Li, B., Guo, B., Li, S.: Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 548–562. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16355-5_42

    Chapter  Google Scholar 

  31. Anjum, A., Ilyas, M.: Activity recognition using smartphone sensors. In: Proceedings of the IEEE Consumer Communications and Networking Conference, pp. 914–919 (2013)

    Google Scholar 

  32. Thomaz, E., Essa, I., Abowd, G.D.: A practical approach for recognizing eating moments with wrist-mounted inertial sensing. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1029–1040 (2015)

    Google Scholar 

  33. Santani, D., Do, T., Labhart, F., Landolt, S., Kuntsche, E., Gatica-Perez, D.: DrinkSense: characterizing youth drinking behavior using smartphones. IEEE Trans. Mob. Comput. 17(10), 2279–2292 (2018)

    Article  Google Scholar 

  34. Arnold, Z., Larose, D., Agu, E.: Smartphone inference of alcohol consumption levels from gait. In: 2015 International Conference on Healthcare Informatics, pp. 417–426 (2015)

    Google Scholar 

  35. Chang, L., et al.: SleepGuard: capturing rich sleep information using smartwatch sensing data. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(3), 1–34 (2018)

    Article  Google Scholar 

  36. Wan, N., Lin, G.: Classifying human activity patterns from smartphone collected GPS data: a fuzzy classification and aggregation approach. Trans. GIS 20(6), 869–886 (2016)

    Article  MathSciNet  Google Scholar 

  37. Chen, Z., Zhang, L., Jiang, C., Cao, Z., Cui, W.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 18(11), 2714–2724 (2018)

    Article  Google Scholar 

  38. Ma, Y., et al.: Location-and person-independent activity recognition with WiFi, deep neural networks, and reinforcement learning. ACM Trans. Internet Things 2(1), 1–25 (2021)

    Article  Google Scholar 

  39. Yao, Y., Song, L., Ye, J.: Motion-To-BMI: using motion sensors to predict the body mass index of smartphone users. Sensors 20(4), 1134 (2020)

    Article  Google Scholar 

  40. Albanese, E., et al.: Body mass index in midlife and dementia: systematic review and meta-regression analysis of 589,649 men and women followed in longitudinal studies. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 8, 165–178 (2017)

    Google Scholar 

  41. Dobner, J., Kaser, S.: Body mass index and the risk of infection-from underweight to obesity. Clin. Microbiol. Infect. 24(1), 24–28 (2018)

    Article  Google Scholar 

  42. Garcia-Ceja, E., Riegler, M., Nordgreen, T., Jakobsen, P., Oedegaard, K.J., Torresen, J.: Mental health monitoring with multimodal sensing and machine learning: a survey. Pervasive Mob. Comput. 51, 1–26 (2018)

    Article  Google Scholar 

  43. Arroyo-Gallego, T., et al.: Detection of motor impairment in Parkinson’s disease via mobile touchscreen typing. IEEE Trans. Biomed. Eng. 64(9), 1994–2002 (2017)

    Article  Google Scholar 

  44. Castrillon, R., et al.: Characterization of the handwriting skills as a biomarker for Parkinson disease. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019) - Human Health Monitoring Based on Computer Vision (2019)

    Google Scholar 

  45. Bevan, C., Fraser, D.: Different strokes for different folks? Revealing the physical characteristics of smartphone users from their swipe gestures. Int. J. Hum Comput Stud. 88, 51–61 (2016)

    Article  Google Scholar 

  46. Palmius, N., et al.: Detecting bipolar depression from geographic location data. IEEE Trans. Biomed. Eng. 64(8), 1761–1771 (2016)

    Article  Google Scholar 

  47. Tal, A., Shinar, Z., Shaki, D., Codish, S., Goldbart, A.: Validation of contact-free sleep monitoring device with comparison to polysomnography. J. Clin. Sleep Med. 13(3), 517–522 (2017)

    Article  Google Scholar 

  48. Behar, J., et al.: SleepAp: an automated obstructive sleep apnoea screening application for smartphones. IEEE J. Biomed. Health Inform. 19(1), 325–331 (2014)

    Article  MathSciNet  Google Scholar 

  49. Kostopoulos, P., Nunes, T., Salvi, K., Togneri, M., Deriaz, M.: StayActive: an application for detecting stress. In: Proceedings of the International Conference on Communications, Computation, Networks and Technologies (2015)

    Google Scholar 

  50. Neal, T., Canavan, S.: Mood versus identity: Studying the influence of affective states on mobile biometrics. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture (2020)

    Google Scholar 

  51. Quiroz, J.C., Geangu, E., Yong, M.H.: Emotion recognition using smart watch sensor data: mixed-design study. JMIR Ment. Health 5(3), e10153 (2018)

    Article  Google Scholar 

  52. Cao, B., et al.: DeepMood: modeling mobile phone typing dynamics for mood detection. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  53. Hung, G., Yang, P., Chang, C., Chiang, J., Chen, Y.: Predicting negative emotions based on mobile phone usage patterns: an exploratory study. JMIR Res. Protoc. 5(3), e160 (2016)

    Article  Google Scholar 

  54. Gao, Y., Bianchi-Berthouze, N., Meng, H.: What does touch tell us about emotions in touchscreen-based gameplay? ACM Trans. Comput.-Hum. Interact. 19(4), 1–30 (2012)

    Article  Google Scholar 

  55. Shah, S., Teja, J., Bhattacharya, S.: Towards affective touch interaction: predicting mobile user emotion from finger strokes. J. Interact. Sci. 3(1), 1–15 (2015). https://doi.org/10.1186/s40166-015-0013-z

    Article  Google Scholar 

  56. Zhang, X., Li, W., Chen, X., Lu, S.: MoodExplorer: towards compound emotion detection via smartphone sensing. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 1(4), 1–30 (2018)

    Google Scholar 

  57. Nguyen, K.A., Akram, R.N., Markantonakis, K., Luo, Z., Watkins, C.: Location tracking using smartphone accelerometer and magnetometer traces. In: Proceedings of the International Conference on Availability, Reliability and Security (2019)

    Google Scholar 

  58. Hua, J., Shen, Z., Zhong, S.: We can track you if you take the metro: tracking metro riders using accelerometers on smartphones. IEEE Trans. Inf. Forensics Secur. 12(2), 286–297 (2017)

    Article  Google Scholar 

  59. Han, J., Owusu, E., Nguyen, L.T., Perrig, A., Zhang, J.: ACComplice: location inference using accelerometers on smartphones. In: Proceedings of the 4th International Conference on Communication Systems and Networks (2012)

    Google Scholar 

  60. Singh, V., Aggarwal, G., Ujwal, B.V.S.: Ensemble based real-time indoor localization using stray WiFi signal. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE 2018), pp. 1–5 (2018)

    Google Scholar 

  61. Cai, L., Chen, H.: TouchLogger: inferring keystrokes on touch screen from smartphone motion. HotSec 11, 9 (2011)

    Google Scholar 

  62. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference using accelerometers on smartphones. In: Proceedings of the Workshop on Mobile Computing Systems and Applications (2012)

    Google Scholar 

  63. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side channels on smartphones. In: Proceedings of the Annual Computer Security Applications Conference (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Bocu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bocu, R., Bocu, D. (2023). Next Generation Mobile Sensors: Review Regarding the Significance of Deep Learning and Privacy Techniques for Data-Driven Soft Sensors. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-031-28694-0_1

Download citation

Publish with us

Policies and ethics