Skip to main content

DTAG: A Dynamic Threshold-Based Anti-packet Generation Method for Vehicular DTN

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2023)

Abstract

In this paper, we propose a Dynamic Threshold-based Anti-packet Generation (DTAG) method, which considers replication progress of the adjacent nodes. We considered Epidemic and Spray and Wait (SpW) protocols and combined with the proposed DTAG method and conventional anti-packet. Thus, we implemented four scenarios by simulations. From the simulation results, we found that the combination of the proposed DTAG method with Epidemic and SpW protocols reduces the overhead compared with combination of anti-packet method with Epidemic and SpW protocols. Also, the combination of SpW protocol with the DTAG method can reduce the storage usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Recommendation ITU-R P.1411-11: propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU, September 2019. https://www.itu.int/rec/R-REC-P.1411-11-202109-I/en

  2. Barroca, C., Grilo, A., Pereira, P.R.: Improving message delivery in UAV-based delay tolerant networks. In: Proceedings of the 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST-2018), pp. 1–7, October 2018. https://doi.org/10.1109/ITST.2018.8566956

  3. Baumgärtner, L., Höchst, J., Meuser, T.: B-DTN7: browser-based disruption-tolerant networking via bundle protocol 7. In: Proceedings of the International Conference on Information and Communication Technologies for Disaster Management (ICT-DM-2019), pp. 1–8, December 2019. https://doi.org/10.1109/ICT-DM47966.2019.9032944

  4. Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: MaxProp: routing for vehicle-based disruption-tolerant networks. In: Proceedings of the 25th IEEE International Conference on Computer Communications (IEEE INFOCOM-2006), pp. 1–11, April 2006. https://doi.org/10.1109/INFOCOM.2006.228

  5. Burleigh, S., Fall, K., E. Birrane, I.: Bundle protocol version 7. IETF RFC 9171 (Standards Track), January 2022

    Google Scholar 

  6. Cerf, V., et al.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007

    Google Scholar 

  7. Chuah, M.C., Ma, W.B.: Integrated buffer and route management in a DTN with message ferry. In: Proceedings of the IEEE Military Communications Conference (MILCOM-2006), pp. 1–7, October 2006. https://doi.org/10.1109/MILCOM.2006.302288

  8. Davarian, F., et al.: Improving small satellite communications and tracking in deep space - a review of the existing systems and technologies with recommendations for improvement. Part ii: small satellite navigation, proximity links, and communications link science. IEEE Aerosp. Electron. Syst. Mag. 35(7), 26–40 (2020). https://doi.org/10.1109/MAES.2020.2975260

  9. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27–34, August 2003. https://doi.org/10.1145/863955.863960

  10. Fraire, J.A., Feldmann, M., Burleigh, S.C.: Benefits and challenges of cross-linked ring road satellite networks: a case study. In: Proceedings of the IEEE International Conference on Communications (ICC-2017), pp. 1–7, May 2017. https://doi.org/10.1109/ICC.2017.7996778

  11. Henkel, D., Brown, T.X.: Delay-tolerant communication using mobile robotic helper nodes. In: Proceedings of the 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops 2008, pp. 657–666, April 2008. https://doi.org/10.1109/WIOPT.2008.4586155

  12. Iranmanesh, S., Raad, R., Raheel, M.S., Tubbal, F., Jan, T.: Novel DTN mobility-driven routing in autonomous drone logistics networks. IEEE Access 8, 13661–13673 (2020). https://doi.org/10.1109/ACCESS.2019.2959275

    Article  Google Scholar 

  13. Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62–66, June 2007. https://doi.org/10.1145/1247694.1247707

  14. Rüsch, S., Schürmann, D., Kapitza, R., Wolf, L.: Forward secure delay-tolerant networking. In: Proceedings of the 12th Workshop on Challenged Networks (CHANTS-2017), pp. 7–12, October 2017. https://doi.org/10.1145/3124087.3124094

  15. Scenargie: Space-time engineering, LLC. http://www.spacetime-eng.com/

  16. Scott, K., Burleigh, S.: Bundle protocol specification. IETF RFC 5050 (Experimental), November 2007

    Google Scholar 

  17. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and Wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the ACM SIGCOMM Workshop on Delay-Tolerant Networking 2005 (WDTN 2005), pp. 252–259, August 2005. https://doi.org/10.1145/1080139.1080143

  18. Sugihara, K., Hayashibara, N.: Message delivery of Nomadic Lévy walk based message ferry routing in delay tolerant networks. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022. LNNS, vol. 449, pp. 259–270. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99584-3_23

    Chapter  Google Scholar 

  19. Uchimura, S., Azuma, M., Ikeda, M., Barolli, L.: An enhanced adaptive anti-packet recovery method for inter-vehicle communications. In: Proceedings of the International Conference on Network-Based Information Systems (NBiS-2022), pp. 374–383 (2022). https://doi.org/10.1007/978-3-031-14314-4_38

  20. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Duke University, Technical report (2000)

    Google Scholar 

  21. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: Proceedings of the 1st International Conference on Advances in Satellite and Space Communications (SPACOMM-2009), pp. 187–196, July 2009. https://doi.org/10.1109/SPACOMM.2009.39

  22. Yasmeen, F., Huda, N., Yamada, S., Borcea, C.: Ferry access points and sticky transfers: improving communication in ferry-assisted DTNs. In: Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM-2012), pp. 1–7, June 2012. https://doi.org/10.1109/WoWMoM.2012.6263746

  23. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–1418, March 2005. https://doi.org/10.1109/INFCOM.2005.1498365

  24. Zhao, W., Ammar, M.: Message ferrying: proactive routing in highly-partitioned wireless ad hoc networks. In: The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, FTDCS 2003, Proceedings, pp. 308–314, May 2003. https://doi.org/10.1109/FTDCS.2003.1204352

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uchimura, S., Azuma, M., Ikeda, M., Barolli, L. (2023). DTAG: A Dynamic Threshold-Based Anti-packet Generation Method for Vehicular DTN. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-031-28694-0_39

Download citation

Publish with us

Policies and ethics