Abstract
Robotics plays a significant part in raising the standard of living. With a variety of useful applications in several service sectors, such as transportation, manufacturing, and healthcare. In order to make these services useable with efficacy and efficiency in having robotics obey the directions supplied to them by the program, continuous improvement is required. Intensive research has been focusing on the way to improve these services which has led to the use of sub-sections of artificial intelligence represented by ML and DL with their state-of-the-art algorithms and architecture adding positive improvements to the field of robotics. Recent studies prove various ML/DL algorithms for robotic system architectures to offer solutions for different issues related to, robotics autonomy, and decision making. This chapter provides a thorough review about autonomous and automatic robotics along with their uses. Additionally, the chapter discusses extensive machine learning techniques such as machine learning for robotics. And finally, a discussion about the issues and future of artificial intelligence applications in robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Saeed, M., OmriS., Abdel-KhalekE. S., AliM. F., & Alotaibi M.: Optimal path planning for drones based on swarm intelligence algorithm. Neural Computing and Applications, 34, 10133–10155 (2022). https://doi.org/10.1007/s00521-022-06998-9.
Niko, S., et al. (2018). The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4), 405–420. https://doi.org/10.1177/0278364918770733
Ali, E. S., Zahraa, T., & Mona, H. (2021). Algorithms optimization for intelligent IoV applications. In J. Zhao & Vinoth K. (Eds.), Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies (pp. 1–25). Hershey, PA: IGI Global (2021). https://doi.org/10.4018/978-1-7998-6870-5.ch001
Matt, L, Marie, F, Louise, A., Clare, D, & Michael, F. (2020). Formal specification and verification of autonomous robotic systems: A survey. ACM Computing Surveys, 52I(5), 100, 1–41. https://doi.org/10.1145/3342355.
Alexander, L., Konstantin, M., & Pavol. B. (2021). Convolutional Neural Networks Training for Autonomous Robotics, 29, 1, 75–79. https://doi.org/10.2478/mspe-2021-0010.
Hassan, M., Mohammad, H., Othman, O., & Aisha, H. (2022). Performance evaluation of uplink shared channel for cooperative relay based narrow band internet of things network. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS). IEEE.
Fahad, A., Alsolami, F., & Abdel-Khalek, S. (2022). Machine learning techniques in internet of UAVs for smart cities applications. Journal of Intelligent & Fuzzy Systems, 42(4), 3203–3226
Salih, A., & Sayed A.: Machine learning in cyber-physical systems in industry 4.0. In A. Luhach & E. Atilla (Eds.), Artificial Intelligence Paradigms for Smart Cyber-Physical Systems. (pp. 20–41). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-7998-5101-1.ch002.
Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 43, 907–928.
Lim, G., Suh, I., & Suh, H. (2011). Ontology-Based unified robot knowledge for service robots in indoor environments. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 41, 492–509.
Mohammed, D., Aliakbar, A., Muhayy, U., & Jan, R. (2019). PMK—A knowledge processing framework for autonomous robotics perception and manipulation. Sensors, 19, 1166. https://doi.org/10.3390/s19051166
Wil, M., Martin, B., & Armin, H. (2018). Robotic Process Automation, Springer Fachmedien Wiesbaden GmbH, part of Springer Nature (2018)
Aguirre, S., & Rodriguez, A. (2017). Automation of a business process using robotic process automation (RPA): A case study. Applied Computational Science and Engineering Communications in Computer and Information Science.
Ilmari, P., & Juha, L. (2021). Robotic process automation (RPA) as a digitalization related tool to process enhancement and time saving. Research. https://doi.org/10.13140/RG.2.2.13974.68161
Mona, B., & Sayed, A. (2021). Intelligence IoT Wireless Networks. Intelligent Wireless Communications, IET Book Publisher.
Niall, O. et al. (2020). In K. Arai & S. Kapoor (Eds.), Deep Learning versus Traditional Computer Vision. Springer Nature Switzerland AG 2020: CVC 2019, AISC 943 (pp. 128–144). https://doi.org/10.1007/978-3-030-17795-9_10.
Othman, O., & Muhammad, H. et al. (2022). Vehicle detection for vision-based intelligent transportation systems using convolutional neural network algorithm. Journal of Advanced Transportation, Article ID 9189600. https://doi.org/10.1155/2022/9189600.
Ross, G., Jeff, D., Trevor, D., & Jitendra, M. (2019). Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 142–158.
Ian, G., Yoshua, B., & Aaron. C. (2016). Deep Learning (Adaptive Computation and Machine Learning series) Deep Learning. MIT Press.
Macaulay, M. O., & Shafiee, M. (2022). Machine learning techniques for robotic and autonomous inspection of mechanical systems and civil infrastructure. Autonomous Intelligent Systems, 2, 8. https://doi.org/10.1007/s43684-022-00025-3
Khan, S., Rahmani, H., Shah, S. A. A., Bennamoun, M. (2018). A guide to convolutional neural networks for computer vision. Springer. https://doi.org/10.2200/S00822ED1V01Y201712COV01.
Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. International Journal of Robotics Research, 32, 1238–1274.
Bakri, H., & Elmustafa, A., & Rashid, A.: Machine learning for industrial IoT systems. In J. Zhao & V. Vinoth Kumar, (Eds.), Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies (pp. 336–358). Hershey, PA: IGI Global, (2021). https://doi.org/10.4018/978-1-7998-6870-5.ch023
Luong, N. C., Hoang, D. T., Gong, S., Niyato, D., Wang, P., Liang, Y. C., & Kim, D. I. (2019). Applications of deep reinforcement learning in communications and networking: A survey. IEEE Communications Surveys Tutorials, 21, 3133–3174.
Chen, Z., & Huang, X. (2017). End-to-end learning for lane keeping of self-driving cars. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 1856–1860). https://doi.org/10.1109/IVS.2017.7995975.
Jiang, H., Liangcai, Z., Gongfa, L., & Zhaojie, J. (2021). Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning, learning for a robot: Deep reinforcement learning, imitation Learning. Transfer Learning. Sensors, 21, 1278. https://doi.org/10.3390/s21041278
Yan, W., Cristian, C., Beltran, H., Weiwei, W., & Kensuke, H. (2022). An adaptive imitation learning framework for robotic complex contact-rich insertion tasks. Frontiers in Robotics and AI, 8, 90–123.
Ali, E. S., Hassan, M. B., & Saeed, R. (2020). Machine learning technologies in internet of vehicles. In: M. Magaia, G. Mastorakis, C. Mavromoustakis, E. Pallis & E. K Markakis (Eds.), Intelligent Technologies for Internet of Vehicles. Internet of Things. Cham: Springer. https://doi.org/10.1007/978-3-030-76493-7_7.
Alatabani, L. E., Ali, E. S., & Saeed, R. A. (2021). Deep learning approaches for IoV applications and services. In: N. Magaia, G. Mastorakis, C. Mavromoustakis, E. Pallis, E. K. Markakis (Eds.), Intelligent Technologies for Internet of Vehicles. Internet of Things. Cham: Springer. https://doi.org/10.1007/978-3-030-76493-7_8
Lina, E., Ali, E., & Mokhtar A. et al. (2022). Deep and reinforcement learning technologies on internet of vehicle (IoV) applications: Current issues and future trends. Journal of Advanced Transportation, Article ID 1947886. https://doi.org/10.1155/2022/1947886.
Venator, M. et al. (2021). Self-Supervised learning of domain-invariant local features for robust visual localization under challenging conditions. IEEE Robotics and Automation Letters, 6(2).
Abbas, A., Rania, A., Hesham, A. et al. (2021). Quality of services based on intelligent IoT wlan mac protocol dynamic real-time applications in smart cities. Computational Intelligence and Neuroscience, 2021, Article ID 2287531. https://doi.org/10.1155/2021/2287531.
Maibaum, A., Bischof, A., Hergesell, J., et al. (2022). A critique of robotics in health care. AI & Society, 37, 467–477. https://doi.org/10.1007/s00146-021-01206-z
Yanxue, C., Moorhe, C., & Zhangbo, X. (2021). Artificial intelligence assistive technology in hospital professional nursing technology. Journal of Healthcare Engineering, Article ID 1721529, 7 pages. https://doi.org/10.1155/2021/1721529.
Amanda, P., Jan, B., & Qingbiao, L. (2022). The holy grail of multi-robot planning: Learning to generate online-scalable solutions from offline-optimal experts. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022).
Lorenzo, C., Gian, C., Cardarilli, L., et al. (2021). Multi-agent reinforcement learning: A review of challenges and applications. Applied Sciences, 11, 4948. https://doi.org/10.3390/app11114948
Mahbuba, A., Jiong, J., Akhlaqur, R., Ashfaqur, R., Jiafu, W., & Ekram, H. (2021). Resource allocation and service provisioning in multi-agent cloud robotics: A comprehensive survey. Manuscript. IEEE. Retrieved February 10, 2021.
Wang, Y., Damani, M., Wang, P., et al. (2022). Distributed reinforcement learning for robot teams: A review. Current Robotics Reports. https://doi.org/10.1007/s43154-022-00091-8
Elfatih, N. M., et al. (2022). Internet of vehicle’s resource management in 5G networks using AI technologies: Current status and trends. IET Communications, 16, 400–420. https://doi.org/10.1049/cmu2.12315
Edmund, J., Greg, F., David, M., & David, W. (2021). The segmented colour feature extreme learning machine: applications in agricultural robotics. Agronomy, 11, 2290. https://doi.org/10.3390/agronomy11112290
Rodrigues, I. R., da Silva Neto, S. R.,Kelner, J., Sadok, D., & Endo, P. T. (2021). Convolutional extreme learning machines: A systematic review. Informatics 8, 33. https://doi.org/10.3390/informatics8020033.
Jianwen, G., Xiaoyan, L, Zhenpeng, I., & Yandong, L. et al. (2021). Fault diagnosis of industrial robot reducer by an extreme learning machine with a level-based learning swarm optimizer. Advances in Mechanical Engineering 13(5), 1–10. https://doi.org/10.1177/16878140211019540
Ali, Z., Lorena, D., Saleh, G., Bernard, R., Akif, K., & Mahdi, B. (2021). 4D printing soft robots guided by machine learning and finite element models. Sensors and Actuators A: Physical, 322, 112774.
Elmustafa, S. et al. (2021). Machine learning technologies for secure vehicular communication in internet of vehicles: Recent advances and applications. Security and Communication Networks, Article ID 8868355. https://doi.org/10.1155/2021/8868355.
Ho, S., Banerjee, H., Foo, Y., Godaba, H., Aye, W., Zhu, J., & Yap, C. (2017). Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. Journal of Intelligent Material Systems and Structures, 28, 3054–3065.
Sarthak, B., Hritwick, B., Zion, T., & Hongliang, R. (2019). Deep reinforcement learning for soft, flexible robots: brief review with impending challenges. Robotics, 8, 4. https://doi.org/10.3390/robotics8010004
Estifanos, T., & Mihret, M.: Robotics and artificial intelligence. International Journal of Artificial Intelligence and Machine Learning, 10(2).
Andrius, D., Jurga, S., Žemaitien, E., & Ernestas, Š. et al. (2022). Advanced applications of industrial robotics: New trends and possibilities. Applied Science, 12, 135. https://doi.org/10.3390/app12010135.
Elmustafa, S. A. A., & Mujtaba, E. Y. (2019). Internet of things in smart environment: Concept, applications, challenges, and future directions. World Scientific News (WSN), 134(1), 151.
Ali, E. S., Sohal, H. S. (2017). Nanotechnology in communication engineering: Issues, applications, and future possibilities. World Scientific News (WSN), 66, 134-148.
Reham, A. A., Elmustafa, S. A., Rania, A. M., & Rashid, A. S. (2022). Blockchain for IoT-Based cyber-physical systems (CPS): Applications and challenges. In: D. De, S. Bhattacharyya, & Rodrigues, J. J. P. C. (Eds.), Blockchain based Internet of Things. Lecture Notes on Data Engineering and Communications Technologies (Vol. 112). Singapore: Springer. https://doi.org/10.1007/978-981-16-9260-4_4.
Zhang, Q, Lu, J., & Jin, Y. (2020). Artificial intelligence in recommender systems. Complex & Intelligent Systems. Retrieved September 28, 2020 from, https://doi.org/10.1007/s40747-020-00212-w.
Abdalla, R. S., Mahbub, S. A., Mokhtar, R. A., Elmustafa, S. A., Rashid, A. S. (2021). IoE design principles and architecture. In Book: Internet of Energy for Smart Cities: Machine Learning Models and Techniques. USA: Publisher: CRC group, Taylor & Francis Group.
Hyeyoung, K., Suyeon, L., Yoonseo, P., & Anna, C. (2022). A survey of recommendation systems: recommendation models, techniques, and application fields, recommendation systems: recommendation models, techniques, and application fields. Electronics, 11, 141. https:// doi.org/https://doi.org/10.3390/electronics11010141.
Yuanyuan, C., Dixiao, C., Shuzhang, L. et al. (2021). Recent advances in field-controlled micro–nano manipulations and micro–nano robots. Advanced Intelligent Systems, 4(3), 2100116, 1–23 (2021). https://doi.org/10.1002/aisy.202100116,
Mona, B., et al. (2021). Artificial intelligence in IoT and its applications. Intelligent Wireless Communications, IET Book Publisher.
Neto, A., Lopes, I. A., & Pirota, K. (2010). A Review on Nanorobotics. Journal of Computational and Theoretical Nanoscience, 7, 1870–1877.
Gautham, G., Yaser, M., & Kourosh, Z. (2021). A Brief review on challenges in design and development of nanorobots for medical applications. Applied Sciences, 11, 10385. https://doi.org/10.3390/app112110385
Egorov, E., Pieters, C., Korach-Rechtman, H., et al. (2021). Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Delivery and Translational Research, 11, 345–352. DOI: 10.1007/s13346-021-00929-2.
Yang, Z., Kai, Z., Haotian, Y., Yi, Z., Dongliang, Z., & Jing, H. (2022). Indoor simultaneous localization and mapping based on fringe projection profilometry 23, arXiv:2204.11020v1 [cs.RO].
Miramá, V. F., DÃez, L. E., Bahillo, A., & Quintero, V. (2021). A survey of machine learning in pedestrian localization systems: applications, open issues and challenges. IEEE Access, 9, 120138–120157. https://doi.org/10.1109/ACCESS.2021.3108073
Tian, Y., Adnane, C., & Houcine, C. (2021). A survey of recent indoor localization scenarios and methodologies. Sensors, 21, 8086. https://doi.org/10.3390/s21238086
Giuseppe, F., René, D., Fabio, S., Strandhagen, J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda European Journal of Operational Research, 294(2), (405–426). https://doi.org/10.1016/j.ejor.2021.01.019. Published 2021.
Alfieri, A., Cantamessa, M., Monchiero, A., & Montagna, F. (2012). Heuristics for puzzle-based storage systems driven by a limited set of automated guided vehicles. Journal of Intelligent Manufacturing, 23(5), 1695–1705.
Ahmad, B., Xiaodong, Z., & Haiming, S. et al. (2022). Precise motion control of a power line inspection robot using hybrid time delay and state feedback control. Frontiers in Robotics and AI 9(24). https://doi.org/10.3389/frobt.2022.746991.
Elsa, J., Hung, K., & Emel, D. (2022). A survey of human gait-based artificial intelligence applications. Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.749274.
Xi, V., & Lihui, W. (2021). A literature survey of the robotic technologies during the COVID-19 pandemic. Journal of Manufacturing Systems, 60, 823–836. https://doi.org/10.1016/j.jmsy.2021.02.005
Ahir, S., Telavane, D., & Thomas, R. (2020). The impact of artificial intelligence, blockchain, big data and evolving technologies in coronavirus disease-2019 (COVID-19) curtailment. In: Proceedings of the International Conference of Smart Electronics Communication ICOSEC 2020 (pp. 113–120). https://doi.org/10.1109/ICOSEC49089.2020.9215294.
Lana, I. S., Elmustafa, S., & Saeed, A. (2022). Machine learning in healthcare: Theory, applications, and future trends. In R. El Ouazzani & M. Fattah & N. Benamar (Eds.), AI Applications for Disease Diagnosis and Treatment (pp. 1–38). Hershey, PA: IGI Global, (2022). https://doi.org/10.4018/978-1-6684-2304-2.ch001
Jat, D., & Singh, C. (2020). Artificial intelligence-enabled robotic drones for COVID-19 outbreak. Springer Briefs Applied Science Technology, 37–46 (2020). DOI: https://doi.org/10.1007/978–981–15–6572–4_5.
Schulte, P., Streit, J., Sheriff, F., & Delclos, G. et al. (2020). Potential scenarios and hazards in the work of the future: a systematic review of the peer-reviewed and gray literatures. Annals of Work Exposures and Health, 64, 786–816, (2020), DOI: https://doi.org/10.1093/annweh/wxaa051.
Alsolami, F., Alqurashi, F., & Hasan, M. K. et al. (2021). Development of self-synchronized drones’ network using cluster-based swarm intelligence approach. IEEE Access, 9, 48010–48022. https://doi.org/10.1109/ACCESS.2021.3064905.
Alatabani, L. E., Ali, E. S., Mokhtar, R. A., Khalifa, O. O., & Saeed, R. A. (2022). Robotics architectures based machine learning and deep learning approaches. In 8th International Conference on Mechatronics Engineering (ICOM 2022), Online Conference, Kuala Lumpur, Malaysia (pp. 107–113). https://doi.org/10.1049/icp.2022.2274.
Malik, A. A., Masood, T., & Kousar, R. (2020). Repurposing factories with robotics in the face of COVID-19. IEEE Transactions on Automation Science and Engineering, 5(43), 133–145. https://doi.org/10.1126/scirobotics.abc2782.
Yoon, S. (2020). A study on the transformation of accounting based on new technologies: Evidence from korea. Sustain, 12, 1–23. https://doi.org/10.3390/su12208669
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Alatabani, L.E., Ali, E.S., Saeed, R.A. (2023). Machine Learning and Deep Learning Approaches for Robotics Applications. In: Azar, A.T., Koubaa, A. (eds) Artificial Intelligence for Robotics and Autonomous Systems Applications. Studies in Computational Intelligence, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-031-28715-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-28715-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28714-5
Online ISBN: 978-3-031-28715-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)