Skip to main content

Navigation and Trajectory Planning Techniques for Unmanned Aerial Vehicles Swarm

  • Chapter
  • First Online:
Artificial Intelligence for Robotics and Autonomous Systems Applications

Abstract

Navigation and trajectory planning algorithms is one of the most important issues in unmanned aerial vehicle (UAV) and robotics. Recently, UAV swarm or flying ad-hoc network which have much interest and extensive attentions from aviation industry, academia and research community, as it becomes one of the great tools for smart cities, rescue/disaster managements and military applications. UAV swarm is a scenario makes the UAVs interacted with each other. The control and communication structure in UAVs swarm require a specific decision to improve the trajectory planning and navigation operations of UAVs swarm. In addition, it requires high processing time and power with resources scarcity to efficiently operates the flights plan. Artificial intelligence (AI) is a powerful tool for optimization and accurate solutions for decision and power management issues. However, it comes with high data communication and processing. Leveraging AI with navigation and path planning it gives much adding values and great results for the system robustness. UAV industry moves toward the AI approaches in developing UAVs swarm and promising more intelligence UAV swarm interaction, according to the importance of this topic, this chapter will provide a systematic review on AI approaches and most algorithms those enable to developing the navigation and trajectory planning strategies for UAV swarm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, Y., Zhucun, X., Xia, G.-S., & Zhang, L. (2018). A survey on vision-based UAV navigation. Geo-Spatial Information Science, 21(1), 1–12.

    Article  Google Scholar 

  2. Rashid, A., & Mohamed, O. (2022). Optimal path planning for drones based on swarm intelligence algorithm. Neural Computing and Applications, 34, 10133–10155. https://doi.org/10.1007/s00521-022-06998-9

    Article  Google Scholar 

  3. Aggarwal, S., & Kumar, N. (2019). Path planning techniques for unmanned aerial vehicles: a review. Solutions, and Challenge, Com Com, 149

    Google Scholar 

  4. Lina, E., Ali, A., & Rania, A., et al, (2022). Deep and reinforcement learning technologies on internet of vehicle (IoV) applications: Current issues and future trends. Journal of Advanced Transportation, Article ID 1947886. https://doi.org/10.1155/2022/1947886

  5. Farshad, K., Ismail, G., & Mihail, L. S. (2018). Autonomous tracking of intermittent RF source using a UAV swarm. IEEE Access, 6, 15884–15897.

    Article  Google Scholar 

  6. Saeed, M. M., Saeed, R. A., Mokhtar, R. A., Alhumyani, H., & Ali, E. S. (2022). A novel variable pseudonym scheme for preserving privacy user location in 5G networks. Security and Communication Networks, Article ID 7487600. https://doi.org/10.1155/2022/7487600

  7. Han, J., Xu, Y., Di, L., & Chen, Y. (2013). Low-cost multi-uav technologies for contour mapping of nuclear radiation field. Journal of Intelligent and Robotic Systems, 70(1–4), 401–410.

    Article  Google Scholar 

  8. Merino, L., Martínez, J. R., & Ollero, A. (2015). Cooperative unmanned aerial systems for fire detection, monitoring, and extinguishing. In Handbook of unmanned aerial vehicles (pp. 2693–2722).

    Google Scholar 

  9. Othman, O. et al. (2022). Vehicle detection for vision-based intelligent transportation systems using convolutional neural network algorithm. Journal of Advanced Transportation, Article ID 9189600. https://doi.org/10.1155/2022/9189600

  10. Elfatih, N. M., et al. (2022). Internet of vehicle’s resource management in 5G networks using AI technologies: Current status and trends. IET Communications, 16, 400–420. https://doi.org/10.1049/cmu2.12315

    Article  Google Scholar 

  11. Sana, U., Ki-Il, K., Kyong, H., Muhammad, I., et al. (2009). UAV-enabled healthcare architecture: Issues and challenges’’. Future Generation Computer Systems, 97, 425–432.

    Google Scholar 

  12. Haifa, T., Amira, C., Hichem, S., & Farouk, K. (2021). Cognitive radio and dynamic TDMA for efficient UAVs swarm Communications. Computer Networks, 196.

    Google Scholar 

  13. Saleem, Y., Rehmani, M. H., & Zeadally, S. (2015). Integration of cognitive radio technologywith unmanned aerial vehicles: Issues, opportunities, and future research challenges. Journal of Network and Computer Applications, 50, 15–31. https://doi.org/10.1016/j.jnca.2014.12.002

    Article  Google Scholar 

  14. Rashid, A., Sabira, K., Borhanuddin, M., & Mohd, A. (2006). UWB-TOA geolocation techniques in indoor environments. Institution of Engineers Malaysia (IEM), 67(3), 65–69, Malaysia.

    Google Scholar 

  15. Xi, C., Jun, T., & Songyang, L. (2020). Review of unmanned aerial vehicle Swarm communication architectures and routing protocols. Applied Sciences, 10, 3661. https://doi.org/10.3390/app10103661

    Article  Google Scholar 

  16. Sahingoz, O. K. (2013). Mobile networking with UAVs: Opportunities and challenges. In Proceedings of the 2013 international conference on unmanned aircraft systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013 (pp. 933–941). New York, NY, USA: IEEE.

    Google Scholar 

  17. Kaleem, Z., Qamar, A., Duong, T., & Choi, W. (2019). UAV-empowered disaster-resilient edge architecture for delay-sensitive communication. IEEE Network, 33, 124–132.

    Google Scholar 

  18. Sun, Y., Wang, H., Jiang, Y., Zhao, N. (2019). Research on UAV cluster routing strategy based on distributed SDN. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 2019 (pp. 1269–1274). New York, NY, USA: IEEE.

    Google Scholar 

  19. Khan, M., Qureshi, I, & Khan, I. (2017). Flying ad-hoc networks (FANETs): A review of communication architectures, and routing protocols. In Proceedings of the 2017 first international conference on latest trends in electrical engineering and computing technologies (INTELLECT). (pp. 1–9). New York, NY, USA.

    Google Scholar 

  20. Shubhani, A., & Neeraj, K. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 149, 270–299.

    Google Scholar 

  21. Mamoon, M., et al. (2022). A comprehensive review on the users’ identity privacy for 5G networks. IET Communications, 16, 384–399. https://doi.org/10.1049/cmu2.12327

    Article  Google Scholar 

  22. Yijing, Z., Zheng, Z., & Yang, L. (2018). Survey on computational-intelligence-based UAV path planning. Knowledge-Based Systems, 158, 54–64.

    Article  Google Scholar 

  23. Zhao, Y., Zheng, Z., Zhang, X., & Liu Y. (2017). Q learning algorithm-based UAV path learning and obstacle avoidance approach. In: 2017 thirty-sixth chinese control conference (CCC)

    Google Scholar 

  24. Zhang, H. (2017). Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment. Press.

    Book  Google Scholar 

  25. Alaa, M., et al. (2022). Performance evaluation of downlink coordinated multipoint joint transmission under heavy IoT traffic load. Wireless Communications and Mobile Computing, Article ID 6837780.

    Google Scholar 

  26. Sharma, R., & Ghose, D. (2009). Collision avoidance between uav clusters using swarm intelligence techniques. International Journal of Systems Science, 40(5), 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  27. Abdurrahman, B., & Mehmetnder, E. (2016). Fpga based offline 3d UAV local path planner using evolutionary algorithms for unknown environments. Proceedings of the Conference of the IEEE Industrial Electronics Society, IECON, 2016, 4778–4783.

    Google Scholar 

  28. Yang, X., Cai, M., Li, J. (2016). Path planning for unmanned aerial vehicles based on genetic programming. In Chinese control and decision conference (pp. 717–722).

    Google Scholar 

  29. Luciano, B., Simeone, B., & Egidio, D. (2017). A mixed probabilistic-geometric strategy for UAV optimum flight path identification based on bit-coded basic manoeuvres. Aerospace Science Technology, 71.

    Google Scholar 

  30. Phung, M., Cong, H., Dinh, T., & Ha, Q. (2017). Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Automation in Construction, 81, 25–33.

    Article  Google Scholar 

  31. Ugur, O., Koray, S. O. (2016). Multi colony ant optimization for UAV path planning with obstacle avoidance. In International conference on unmanned aircraft systems (pp 47–52).

    Google Scholar 

  32. Adhikari, E., & Reza, H. (2017). A fuzzy adaptive differential evolution for multi-objective 3d UAV path optimization. Evolutionary Computation, 6(9).

    Google Scholar 

  33. Choi, Y., Jimenez, H., & Mavris, D. (2017). Two-layer obstacle collision avoidance with machine learning for more energy-efficient unmanned aircraft trajectories. Robotics and Autonomous Systems, 6(2).

    Google Scholar 

  34. Abdul, Q. (2017). Saeed M: Scene classification for aerial images based on CNN using sparse coding technique. International Journal of Remote Sensing, 38(8–10), 2662–2685.

    Google Scholar 

  35. Kang, Y., Kim, N., Kim, B., Tahk, M. (2017). Autopilot design for tilt-rotor unmanned aerial vehicle with nacelle mounted wing extension using single hidden layer perceptron neural network. In Proceedings of the Institution of Mechanical Engineers G Journal of Aerospace Engineering, 2(6), 743–789.

    Google Scholar 

  36. Bygi, M., & Mohammad, G. (2007). 3D visibility graph. In International conference on computational science and its applications, conference: computational science and its applications, 2007. ICCSA 2007. Kuala Lampur.

    Google Scholar 

  37. Rashid, A., Rania, A., & Jalel, C., Aisha, H. (2012). TVBDs coexistence by leverage sensing and geo-location database. In IEEE international conference on computer & communication engineering (ICCCE2012) (pp. 33–39).

    Google Scholar 

  38. Fahad, A., Alsolami, F., & Abdel-Khalek, S. (2022). Machine learning techniques in internet of UAVs for smart cities applications. Journal of Intelligent and Fuzzy Systems, 42(4), 3203–3226.

    Article  Google Scholar 

  39. Ali, S., Hasan, M., & Rosilah, H, et al. (2021). Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. Security and Communication Networks, Article ID 8868355. https://doi.org/10.1155/2021/8868355

  40. Zeinab, K., & Ali, S. (2017). Internet of things applications, challenges and related future technologies. World Scientific News (WSN), 67(2), 126–148.

    Google Scholar 

  41. Wang, Y., & Yuan, Q. (2011). Application of Dijkstra algorithm in robot path-planning. In 2011 2nd international conference mechnical automation control engineering (MACE 2011) (pp. 1067–1069).

    Google Scholar 

  42. Patle, B. K., Ganesh, L., Anish, P., Parhi, D. R. K., & Jagadeesh, A. (2019). A review: On path planning strategies for navigation of mobile robot. Defense Technology, 15, 582e606. https://doi.org/10.1016/j.dt.2019.04.011

  43. Reham, A, Ali, A., et al. (2022). Blockchain for IoT-based cyber-physical systems (CPS): applications and challenges. In: De, D., Bhattacharyya, S., Rodrigues, J. J. P. C. (Eds.), Blockchain based internet of things. Lecture notes on data engineering and communications technologies (Vol. 112). Springer. https://doi.org/10.1007/978-981-16-9260-4_4

  44. Jia, Q., & Wang, X. (2009). Path planning for mobile robots based on a modified potential model. In Proceedings of the IEEE international conference on mechatronics and automation, China.

    Google Scholar 

  45. Gul, W., & Nazli, A. (2019). A comprehensive study for robot navigation techniques. Cogent Engineering, 6(1),1632046.

    Google Scholar 

  46. Hu, Y., & Yang, S. (2004). A knowledge based genetic algorithm for path-planning of a mobile robot. In IEEE international conference on robotics automation.

    Google Scholar 

  47. Pratihar, D., Deb, K., & Ghosh, A. (1999). Fuzzy-genetic algorithm and time-optimal obstacle free path generation for mobile robots. Engineering Optimization, 32(1), 117e42.

    Google Scholar 

  48. Hui, N. B., & Pratihar, D. K. (2009). A comparative study on some navigation schemes of a real robot tackling moving obstacles. Robot Computer Integrated Manufacture, 25, 810e28.

    Google Scholar 

  49. Wang, X., Shi, Y., Ding, D., & Gu, X. (2016). Double global optimum genetic algorithm particle swarm optimization-based welding robot path planning. Engineering Optimization, 48(2), 299e316.

    Google Scholar 

  50. Vachtsevanos, K., & Hexmoor, H. (1986). A fuzzy logic approach to robotic path planning with obstacle avoidance. In 25th IEEE conference on decision and control (pp. 1262–1264).

    Google Scholar 

  51. Ali Ahmed, E. S., & Zahraa, T, et al. (2021). Algorithms optimization for intelligent IoV applications. In Zhao, J., and Vinoth Kumar, V. (Eds.), Handbook of research on innovations and applications of AI, IoT, and cognitive technologies (pp. 1–25). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-7998-6870-5.ch001

  52. Rashid, A., & Khatun, S. (2005) Ultra-wideband (UWB) geolocation in NLOS multipath fading environments. In Proceeding of IEEE Malaysian international communications conference–IEEE conference on networking 2005 (MICC-ICON’05) (pp. 1068–1073). Kuala Lumpur, Malaysia.

    Google Scholar 

  53. Hassan, M. B., & Saeed, R. (2021). Machine learning for industrial IoT systems. In Zhao, J., & Vinoth, K. (). Handbook of research on innovations and applications of AI, IoT, and cognitive technologies (pp. 336–358). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-7998-6870-5.ch023

  54. Ali, E. S., & Hassan, M. B. et al. (2021). Terahertz Communication Channel characteristics and measurements Book: Next Generation Wireless Terahertz Communication Networks Publisher. CRC group, Taylor & Francis Group.

    Google Scholar 

  55. Rania, S., Sara, A., & Rania, A., et al. (2021). IoE design principles and architecture. In Book: Internet of energy for smart cities: Machine learning models and techniques, publisher. CRC group, Taylor & Francis Group.

    Google Scholar 

  56. Jaradat, M., Al-Rousan, M., & Quadan, L. (2011). Reinforcement based mobile robot navigation in dynamic environment. Robot Computer Integrated Manufacture, 27, 135e49.

    Google Scholar 

  57. Tschichold, N. (1997). The neural network model Rule-Net and its application to mobile robot navigation. Fuzzy Sets System, 85, 287e303.

    Google Scholar 

  58. Alsaqour, R., Ali, E. S., Mokhtar, R. A., et al. (2022). Efficient energy mechanism in heterogeneous WSNs for underground mining monitoring applications. IEEE Access, 10, 72907–72924. https://doi.org/10.1109/ACCESS.2022.3188654

    Article  Google Scholar 

  59. Jaradat, M., Garibeh, M., & Feilat, E. A. (2012). Autonomous mobile robot planning using hybrid fuzzy potential field. Soft Computing, 16, 153e64.

    Google Scholar 

  60. Yen, C., & Cheng, M. (2018). A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance. Microsystem Technology, 24(1), 125e35.

    Google Scholar 

  61. Duan, L. (2014). Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning. Neurocomputing, 125, 166–171.

    Article  Google Scholar 

  62. Liang, K. (2010). The application of neural network in mobile robot path planning. Journal of System Simulation, 9(3), 87–99.

    Google Scholar 

  63. Horn, E., Schmidt, B., & Geiger, M. (2012). Neural network-based trajectory optimization for unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 35(2), 548–562.

    Article  Google Scholar 

  64. Geiger, B., Schmidt, E., & Horn, J. (2009). Use of neural network approximation in multiple unmanned aerial vehicle trajectory optimization. In Proceedings of the AIAA guidance, navigation, and control conference, Chicago, IL.

    Google Scholar 

  65. Ali, E., Hassan, M., & Saeed, R. (2021). Machine learning technologies in internet of vehicles. In: Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., Markakis, E. K. (Eds.), Intelligent technologies for internet of vehicles. Internet of things. Cham : Springer. https://doi.org/10.1007/978-3-030-76493-7_7

  66. Gautam, S., & Verma, N., Path planning for unmanned aerial vehicle based on genetic algorithm & artificial neural network in 3d. In Proceedings of the 2014 international conference on data mining and intelligent computing (ICDMIC) (pp. 1–5). IEEE.

    Google Scholar 

  67. Wang, N., Gu, X., Chen, J., Shen, L., & Ren, M. (2009). A hybrid neural network method for UAV attack route integrated planning. In Proceedings of the advances in neural networks–ISNN 2009 (pp. 226–235). Springer.

    Google Scholar 

  68. Alatabani, L, & Ali, S. et al. (2021). Deep learning approaches for IoV applications and services. In Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., & Markakis, E. K. (Eds.), Intelligent technologies for internet of vehicles. Internet of things. Cham : Springer. https://doi.org/10.1007/978-3-030-76493-7_8

  69. Hidalgo, A., Miguel, A., Vegae, R., Ferruz, J., & Pavon, N. (2015). Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. Soft Computing, 1e16.

    Google Scholar 

  70. Brand, M., & Yu, H. (2013). Autonomous robot path optimization using firefly algorithm. In International conference on machine learning and cybernetics, Tianjin (Vol. 3, p. 14e7).

    Google Scholar 

  71. Salih, A., & Rania, A. A., et al. (2021). Machine learning in cyber-physical systems in industry 4.0. In Luhach, A. K., and Elçi, A. (Eds.), Artificial intelligence paradigms for smart cyber-physical systems (pp. 20–41). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-7998-5101-1.ch002

  72. Mahboub, A., & Ali, A., et al. (2021). Smart IDS and IPS for cyber-physical systems. In Luhach, A. K., and Elçi, A. (Eds.), Artificial intelligence paradigms for smart cyber-physical systems (pp. 109–136). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-7998-5101-1.ch006

  73. Christensen, A., & Rehan, O. (2008). Synchronization and fault detection in autonomous robots. In IEEE/RSJ intelligent conference on robots and systems (p. 4139e40).

    Google Scholar 

  74. Wang, G., Guo, L., Hong, D., Duan, H., Liu, L., & Wang, H. (2012). A modified firefly algorithm for UCAV path planning. International Journal of Information Technology, 5(3), 123e44.

    Google Scholar 

  75. Patle, B., Parhi, D., Jagadeesh, A., & Kashyap, S. (2017). On firefly algorithm: optimization and application in mobile robot navigation. World Journal of Engineering, 14(1):65e76, (2017).

    Google Scholar 

  76. Patle, B., Pandey, A., Jagadeesh, A., & Parhi, D. (2018). Path planning in uncertain environment by using firefly algorithm. Defense Technology, 14(6), 691e701. https://doi.org/10.1016/j.dt.2018.06.004.

  77. Ebrahimi, J., Hosseinian, S., & Gharehpetian, G. (2011). Unit commitment problem solution using shuffled frog leaping algorithm. IEEE Transactions on Power Systems, 26(2), 573–581.

    Article  Google Scholar 

  78. Tang, D., Yang, J., & Cai, X. (2012). Grid task scheduling strategy based on differential evolution-shuffled frog leaping algorithm. In Proceedings of the 2012 international conference on computer science and service system, (CSSS 2012) (pp. 1702–1708).

    Google Scholar 

  79. Hassanzadeh, H., Madani, K., & Badamchizadeh, M. (2010). Mobile robot path planning based on shuffled frog leaping optimization algorithm. In 2010 IEEE international conference on automation science and engineering, (CASE 2010) (pp. 680–685).

    Google Scholar 

  80. Cekmez, U., Ozsiginan, M., & Sahingoz, O. (2014). A UAV path planning with parallel ACO algorithm on CUDA platform. In Proceedings of the 2014 international conference on unmanned aircraft systems (ICUAS) (pp. 347–354).

    Google Scholar 

  81. Zhang, C., Zhen, Z., Wang, D., & Li, M. (2010). UAV path planning method based on ant colony optimization. In Proceedings of the 2010 Chinese Control and Decision Conference (CCDC) (pp. 3790–3792). IEEE.

    Google Scholar 

  82. Brand, M., Masuda, M., Wehner, N., & Yu, X. (2010). Ant colony optimization algorithm for robot path planning. In 2010 international conference on computer design and applications, 3(V3-V436-V3), 440.

    Google Scholar 

  83. Mohanty, P., & Parhi, D. (2015). A new hybrid optimization algorithm for multiple mobile robots’ navigation based on the CS-ANFIS approach. Memetic Computing, 7(4), 255e73.

    Google Scholar 

  84. Wang, G., Guo, L., Duan, H., Wang, H., Liu, L., & Shao, M. (2012). A hybrid metaheuristic DE/ CS algorithm for UCAV three-dimension path planning. The Scientific World Journal, 2012, 83973. https://doi.org/10.1100/2012/583973.11pages

    Article  Google Scholar 

  85. Abbas, N., & Ali, F. (2017). Path planning of an autonomous mobile robot using enhanced bacterial foraging optimization algorithm. Al-Khwarizmi Engineering Journal, 12(4), 26e35.

    Google Scholar 

  86. Jati, A., Singh, G., Rakshit, P., Konar, A., Kim, E., & Nagar, A. (2012). A hybridization of improved harmony search and bacterial foraging for multi-robot motion planning. In: Evolutionary computation (CEC), IEEE congress, 1e8, (2012).

    Google Scholar 

  87. Asif, K., Jian, P., Mohammad, K., Naushad, V., Zulkefli, M., et al. (2022). PackerRobo: Model-based robot vision self-supervised learning in CART. Alexandria Engineering Journal, 61(12), 12549–12566. https://doi.org/10.1016/j.aej.2022.05.043

    Article  Google Scholar 

  88. Mohanty, P., & Parhi, D. (2016). Optimal path planning for a mobile robot using cuckoo search algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 28(1e2), 35e52.

    Google Scholar 

  89. Wang, G., Guo, L., Duan, H., Wang, H., Liu, L., & Shao, M. (2012). A hybrid metaheuristic DE/ CS algorithm for UCAV three-dimension path planning. The Scientific World Journal, 583973, 11 pages. https://doi.org/10.1100/2012/583973

  90. Ghorpade, S. N., Zennaro, M., & Chaudhari, B. S., et al. (2021). A novel enhanced quantum PSO for optimal network configuration in heterogeneous industrial IoT, in IEEE access, 9, 134022–134036. https://doi.org/10.1109/ACCESS.2021.3115026

  91. Ghorpade, S. N., Zennaro, M., Chaudhari, B. S., et al. (2021). Enhanced differential crossover and quantum particle Swarm optimization for IoT applications. IEEE Access, 9, 93831–93846. https://doi.org/10.1109/ACCESS.2021.3093113

    Article  Google Scholar 

  92. Saeed, R. A., Omri, M., Abdel-Khalek, S., et al. (2022). Optimal path planning for drones based on swarm intelligence algorithm. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-06998-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmustafa Sayed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elfatih, N.M., Ali, E.S., Saeed, R.A. (2023). Navigation and Trajectory Planning Techniques for Unmanned Aerial Vehicles Swarm. In: Azar, A.T., Koubaa, A. (eds) Artificial Intelligence for Robotics and Autonomous Systems Applications. Studies in Computational Intelligence, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-031-28715-2_12

Download citation

Publish with us

Policies and ethics