Skip to main content

Intelligent Control System for Hybrid Electric Vehicle with Autonomous Charging

  • Chapter
  • First Online:
Artificial Intelligence for Robotics and Autonomous Systems Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1093))

Abstract

The present chapter deals with a general review of electric vehicles (EVs) and testing the efficiency of modern charging systems. This work is concentrated also on hybrid vehicle architectures and recharge systems. In the first step and more precisely, a global study on the different architecture and technologies for EVs examined the battery, electric motor, and different sensor actions in electric vehicles. The second part also discusses the different types of charging systems used in EVs which we divided into two types, the first one is classic chargers the second is the autonomous charger. In addition, an overview of the autonomous charger is presented along with its corresponding mathematical modeling to address the photovoltaic charger (PV) and Wireless charging system (WR). After a clear mathematical discerption of each part and by showing the needed electronic equipment to assure each tool's role, an easy management loop is designed and implemented. Then propose a hybrid charging system between PV and WR and then used an intelligent power distribution system. Then, Matlab/Simulink software is used to simulate the energetic performance of an electric vehicle with this hybrid recharge tool under various simulation conditions. At the end of this study, the given results and their corresponding discussions show the benefits and the drawbacks of each solution and prove the importance of this hybrid recharge tool for increasing vehicle autonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, H., & Mi, C. (2011). The impact of bidirectional DC-DC converter on the inverter operation and battery current in hybrid electric vehicles. In 8th international conference power electron. - ECCE Asia "Green world with power electron. ICPE 2011-ECCE Asia (pp. 1013–1015). https://doi.org/10.1109/ICPE.2011.5944686.

  2. Sreedhar, V. (2006). Plug-in hybrid electric vehicles with full performance. In 2006 IEEE configuration electrical hybrid vehicle ICEHV (pp. 1–2). https://doi.org/10.1109/ICEHV.2006.352291.

  3. Mohamed, N., Aymen, F., Ali, Z. M., Zobaa, A. F., & Aleem, S. H. E. A. (2021). Efficient power management strategy of electric vehicles based hybrid renewable energy. Sustainability, 13(13), 7351. https://doi.org/10.3390/su13137351

    Article  Google Scholar 

  4. Ertan H. B., & Arikan, F. R. (2018). Sizing of series hybrid electric vehicle with hybrid energy storage system. In SPEEDAM 2018 - proceedings: international symposium on power electronics, electrical drives, automation and motion (pp. 377–382). https://doi.org/10.1109/SPEEDAM.2018.8445422.

  5. Kisacikoglu, M. C., Ozpineci, B., & Tolbert, L. M. (2013). EV/PHEV bidirectional charger assessment for V2G reactive power operation. IEEE Transactions on Power Electronics, 28(12), 5717–5727. https://doi.org/10.1109/TPEL.2013.2251007

    Article  Google Scholar 

  6. Lee, J. Y., & Han, B. M. (2015). A bidirectional wireless power transfer EV charger using self-resonant PWM. IEEE Transactions on Power Electronics, 30(4), 1784–1787. https://doi.org/10.1109/TPEL.2014.2346255

    Article  MathSciNet  Google Scholar 

  7. Tan, L., Wu, B., Yaramasu, V., Rivera, S., & Guo, X. (2016). Effective voltage balance control for bipolar-DC-Bus-Fed EV charging station with three-level DC-DC Fast Charger. IEEE Transactions on Industrial Electronics, 63(7), 4031–4041. https://doi.org/10.1109/TIE.2016.2539248

    Article  Google Scholar 

  8. Abdelwahab O. M., & Shaaban, M. F. (2019). PV and EV charger allocation with V2G capabilities. In Proceedings - 2019 IEEE 13th international conference on compatibility, power electronics and power engineering, CPE-POWERENG 2019 (pp. 1–5). https://doi.org/10.1109/CPE.2019.8862370.

  9. Domínguez-Navarro, J. A., Dufo-López, R., Yusta-Loyo, J. M., Artal-Sevil, J. S., & Bernal-Agustín, J. L. (2019). Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. International Journal of Electrical Power and Energy Systems, 105, 46–58. https://doi.org/10.1016/j.ijepes.2018.08.001

    Article  Google Scholar 

  10. Ali, Z. M., Aleem, S. H. E. A., Omar, A. I., & Mahmoud, B. S. (2022). Economical-environmental-technical operation of power networks with high penetration of renewable energy systems using multi-objective coronavirus herd immunity algorithm. Mathematics, 10(7), 1201. https://doi.org/10.3390/math10071201

    Article  Google Scholar 

  11. Omori, H., Tsuno, M., Kimura, N., & Morizane, T. (2018). A novel type of single-ended wireless V2H with stable power transfer operation against circuit constants variation. 2018 7th international conference on renewable energy research and applications (vol. 5, pp. 1–5).

    Google Scholar 

  12. Maeno, R., Omori, H., Michikoshi, H., Kimura, N., & Morizane, T. (2018). A 3kW single-ended wireless EV charger with a newly developed SiC-VMOSFET. In 7th onternational IEEE conference on renewable energy research and application, ICRERA 2018 (pp. 418–423). https://doi.org/10.1109/ICRERA.2018.8566866.

  13. Colak, K., Bojarski, M., Asa, E., & Czarkowski, D. (2015). A constant resistance analysis and control of cascaded buck and boost converter for wireless EV chargers. In Conference proceedings - IEEE applied power electronics conference and exposition - APEC (vol. 2015, pp. 3157–3161). https://doi.org/10.1109/APEC.2015.7104803.

  14. Mohamed, N. et al. (2021). A new wireless charging system for electric vehicles using two receiver coils. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2021.08.012.

  15. Azar, A. T., Serrano, F. E., Flores, M. A., Kamal, N. A., Ruiz, F., Ibraheem, I. K., Humaidi, A. J., Fekik, A., Alain, K. S. T., Romanic, K., Rana, K. P. S., Kumar, V., Gorripotu, T. S., Pilla, R., & Mittal, S. (2021). Fractional-order controller design and implementation for maximum power point tracking in photovoltaic panels. In Advances in nonlinear dynamics and chaos (ANDC), renewable energy systems, 2021 (pp. 255–277). Academic. https://doi.org/10.1016/B978-0-12-820004-9.00031-0.

  16. Azar, A. T., Abed, A. M., Abdulmajeed, F. A., Hameed, I. A., Kamal, N. A., Jawad, A. J. M., Abbas, A. H., Rashed, Z. A., Hashim, Z. S., Sahib, M. A., Ibraheem, I. K., & Thabit, R. (2022). A new nonlinear controller for the maximum power point tracking of photovoltaic systems in micro grid applications based on modified anti-disturbance compensation. Sustainability, 14(17), 10511.

    Article  Google Scholar 

  17. Tian, X., He, R., Sun, X., Cai, Y., & Xu, Y. (2020). An ANFIS-based ECMS for energy optimization of parallel hybrid electric bus. IEEE Transactions on Vehicular Technology, 69(2), 1473–1483. https://doi.org/10.1109/TVT.2019.2960593

    Article  Google Scholar 

  18. Lulhe A. M., & Date, T. N. (2016). A technology review paper for drives used in electrical vehicle (EV) and hybrid electrical vehicles (HEV). In 2015 international conference on control, instrumentation, communication and computational technologies, ICCICCT 2015 (pp. 632–636). https://doi.org/10.1109/ICCICCT.2015.7475355.

  19. Datta, U. (2019). A price ‐ regulated electric vehicle charge ‐ discharge strategy. In Energy research (pp. 1032–1042). https://doi.org/10.1002/er.4330.

  20. Rawat, T., Niazi, K. R., Gupta, N., & Sharma, S. (2019). Impact assessment of electric vehicle charging/discharging strategies on the operation management of grid accessible and remote microgrids. International Journal of Energy Research, 43(15), 9034–9048. https://doi.org/10.1002/er.4882

    Article  Google Scholar 

  21. Hu, Y. et al. (2015). Split converter-fed SRM drive for flexible charging in EV/HEV applications, 62(10), 6085–6095.

    Google Scholar 

  22. Mohamed, N., et al. (2022). A comprehensive analysis of wireless charging systems for electric vehicles. IEEE Access, 10, 43865–43881. https://doi.org/10.1109/ACCESS.2022.3168727

    Article  Google Scholar 

  23. Wang, J., Cai, Y., Chen, L., Shi, D., Wang, R., & Zhu, Z. (2020). Review on multi-power sources dynamic coordinated control of hybrid electric vehicle during driving mode transition process. International Journal of Energy Research, 44(8), 6128–6148. https://doi.org/10.1002/er.5264

    Article  Google Scholar 

  24. Zhao, C., Zu, B., Xu, Y., Wang, Z., Zhou, J., & Liu, L. (2020). Design and analysis of an engine-start control strategy for a single-shaft parallel hybrid electric vehicle. Energy, 202(5), 2354–2363. https://doi.org/10.1016/j.energy.2020.117621

    Article  Google Scholar 

  25. Cheng, M., Sun, L., Buja, G., & Song, L. (2015). Advanced electrical machines and machine-based systems for electric and hybrid vehicles. Energies, 8(9), 9541–9564. https://doi.org/10.3390/en8099541

    Article  Google Scholar 

  26. Naoui, M., Aymen, F., Ben Hamed, M., & Lassaad, S. (2019). Analysis of battery-EV state of charge for a dynamic wireless charging system. Energy Storage, 2(2). https://doi.org/10.1002/est2.117.

  27. Rajashekara, K. (2013). Present status and future trends in electric vehicle propulsion technologies. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 3–10. https://doi.org/10.1109/JESTPE.2013.2259614

    Article  Google Scholar 

  28. Paladini, V., Donateo, T., de Risi, A., & Laforgia, D. (2007). Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development. Energy Conversion and Management, 48(11), 3001–3008. https://doi.org/10.1016/j.enconman.2007.07.014

    Article  Google Scholar 

  29. Chopra, S. (2011). Contactless power transfer for electric vehicle charging application. Science (80).

    Google Scholar 

  30. Emadi, A. (2017). Handbook of automotive power electronics and motor drives.

    Google Scholar 

  31. Naoui, M., Flah, A., Ben Hamed, M., & Lassaad, S. (2020). Brushless motor and wireless recharge system for electric vehicle design modeling and control. In Handbook of research on modeling, analysis, and control of complex systems.

    Google Scholar 

  32. Guarnieri, M. (2011). When cars went electric, Part 2. IEEE Industrial Electronics Magazine, 5(2), 46–53. https://doi.org/10.1109/MIE.2011.941122

    Article  Google Scholar 

  33. Levi, E., Bojoi, R., Profumo, F., Toliyat, H. A., & Williamson, S. (2007). Multiphase induction motor drives-a technology status review. IET Electric Power Applications, 1(5), 643–656. https://doi.org/10.1049/iet-epa

    Article  Google Scholar 

  34. Mohamed, N., Flah, A., Ben Hamed, M., & Lassaad, S. (2021). Modeling and simulation of vector control for a permanent magnet synchronous motor in electric vehicle. In 2021 4th international symposium on advanced electrical and communication technologies (ISAECT), 2021 (pp. 1–5). https://doi.org/10.1109/ISAECT53699.2021.9668411.

  35. Yilmaz, M., & Krein, P. T. (2013). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Transactions on Power Electronics, 28(5), 2151–2169. https://doi.org/10.1109/TPEL.2012.2212917

    Article  Google Scholar 

  36. Mohamed, N., Flah, A., & Ben Hamed, M. (2020). Influences of photovoltaics cells number for the charging system electric vehicle. In Proceedings of the 17th international multi-conference system signals devices, SSD 2020 (pp. 244–248). https://doi.org/10.1109/SSD49366.2020.9364141.

  37. Wu, H. H., Gilchrist, A., Sealy, K., Israelsen, P., & Muhs, J. (2011). A review on inductive charging for electric vehicles. 2011 IEEE international electrical machine drives conference IEMDC, 2011 (pp. 143–147). https://doi.org/10.1109/IEMDC.2011.5994820

  38. Xie, L., Shi, Y., Hou, Y. T., & Lou, A. (2013). Wireless power transfer and applications to sensor networks. IEEE Wireless Communications, 20(4), 140–145. https://doi.org/10.1109/MWC.2013.6590061

    Article  Google Scholar 

  39. Cao, P. et al. (2018). An IPT system with constant current and constant voltage output features for EV charging. In Proceedings of the IECON 2018 - 44th annual conference IEEE industrial electronics society (vol. 1, pp. 4775–4780). https://doi.org/10.1109/IECON.2018.8591213.

  40. Nagendra, G. R., Chen, L., Covic, G. A., & Boys, J. T. (2014). Detection of EVs on IPT highways. In Conference proceedings of the - IEEE applied power electronics conference and exposition - APEC (pp. 1604–1611). https://doi.org/10.1109/APEC.2014.6803521.

  41. Mohamed, N., Aymen, F., & Ben Hamed, M. (2019). Characteristic of photovoltaic generator for the electric vehicle. International Journal of Scientific and Technology Research, 8(10), 871–876.

    Google Scholar 

  42. Dheeban, S. S., Selvan, N. M., & Kumar, C. S. (2019). Design of standalone pv system. International Journal of Scientific and Technology Research (vol. 8, no. 11, pp. 684–688).

    Google Scholar 

  43. Kamal, N. A., & Ibrahim, A. M. (2018). Conventional, intelligent, and fractional-order control method for maximum power point tracking of a photovoltaic system: A review. In Advances in nonlinear dynamics and chaos (ANDC), fractional order systems (pp. 603–671). Academic.

    Google Scholar 

  44. Amara, K., Malek, A., Bakir, T., Fekik, A., Azar, A. T., Almustafa, K. M., Bourennane, E., & Hocine, D. (2019). Adaptive neuro-fuzzy inference system based maximum power point tracking for stand-alone photovoltaic system. International Journal of Modelling, Identification and Control, 2019, 33(4), 311–321.

    Google Scholar 

  45. Fekik, A., Hamida, M. L., Houassine, H., Azar, A. T., Kamal, N. A., Denoun, H., Vaidyanathan, S., & Sambas, A. (2022). Power quality improvement for grid-connected photovoltaic panels using direct power control. In A. Fekik, & N. Benamrouche (Ed.), Modeling and control of static converters for hybrid storage systems, 2022 (pp. 107–142). IGI Global. https://doi.org/10.4018/978-1-7998-7447-8.ch005.

  46. Fekik, A., Azar A. T., Kamal, N. A., Serrano, F. E., Hamida, M. L., Denoun, H., & Yassa, N. (2021). Maximum power extraction from a photovoltaic panel connected to a multi-cell converter. In Hassanien, A. E., Slowik, A., Snášel, V., El-Deeb, H., & Tolba, F. M. (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2020. AISI 2020. Advances in intelligent systems and computing (vol. 1261, pp. 873–882). Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_77.

  47. Kamal, N. A., Azar, A. T., Elbasuony, G. S., Almustafa, K. A., & Almakhles, D. (2019). PSO-based adaptive perturb and observe MPPT technique for photovoltaic systems. In The international conference on advanced intelligent systems and informatics AISI 2019. Advances in intelligent systems and computing (vol. 1058, pp. 125–135). Springer.

    Google Scholar 

  48. Ammar, H. H., Azar, A. T., Shalaby, R., Mahmoud, M. I. (2019). Metaheuristic optimization of fractional order incremental conductance (FO-INC) Maximum power point tracking (MPPT). Complexity, 2019, Article ID 7687891, 1–13. https://doi.org/10.1155/2019/7687891

  49. Rana, K. P. S., Kumar, V., Sehgal, N., George, S., & Azar, A. T. (2021). Efficient maximum power point tracking in fuel cell using the fractional-order PID controller. In Advances in nonlinear dynamics and chaos (ANDC), renewable energy systems (pp. 111–132). Academic. https://doi.org/10.1016/B978-0-12-820004-9.00017-6

  50. Ben Smida, M., Sakly, A., Vaidyanathan, S., & Azar, A. T. (2018). Control-based maximum power point tracking for a grid-connected hybrid renewable energy system optimized by particle swarm optimization. Advances in system dynamics and control (pp. 58–89). IGI-Global, USA. https://doi.org/10.4018/978-1-5225-4077-9.ch003

  51. Ghoudelbourk, S., Dib, D., Omeiri, A., & Azar, A. T. (2016). MPPT Control in wind energy conversion systems and the application of fractional control (PIα) in pitch wind turbine. International Journal of Modelling, Identification and Control (IJMIC), 26(2), 140–151.

    Google Scholar 

  52. Kraiem, H., et al. (2022). Decreasing the battery recharge time if using a fuzzy based power management loop for an isolated micro-grid farm. Sustain, 14(5), 1–23. https://doi.org/10.3390/su14052870

    Article  Google Scholar 

  53. Liu, H. C., Wu, S.-M., Wang, Z.-L., & Li, X.-Y. (2021). A new method for quality function deployment with extended prospect theory under hesitant linguistic environment. IEEE Transactions on Engineering Management, 68(2), 442–451. https://doi.org/10.1109/TEM.2018.2864103

  54. Nguyen, B. H., Trovão, J. P. F., German, R., & Bouscayrol, A. (2020). Real-time energy management of parallel hybrid electric vehicles using linear quadratic regulation. Energies, 13(21), 1–19. https://doi.org/10.3390/en13215538

    Article  Google Scholar 

  55. Guo, J., He, H., & Sun, C. (2019). ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management. IEEE Transactions on Vehicular Technology, 68(6), 5309–5320. https://doi.org/10.1109/TVT.2019.2912893

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prince Sultan University, Riyadh, Saudi Arabia for supporting this work. Special acknowledgement to Automated Systems & Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Naoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naoui, M., Flah, A., Sbita, L., Ben Hamed, M., Azar, A.T. (2023). Intelligent Control System for Hybrid Electric Vehicle with Autonomous Charging. In: Azar, A.T., Koubaa, A. (eds) Artificial Intelligence for Robotics and Autonomous Systems Applications. Studies in Computational Intelligence, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-031-28715-2_13

Download citation

Publish with us

Policies and ethics