Skip to main content

Intention Modulation for Multi-step Tasks in Continuous Time Active Inference

  • Conference paper
  • First Online:
Active Inference (IWAI 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1721))

Included in the following conference series:

Abstract

We extend an Active Inference theory in continuous time of how neural circuitry in the Dorsal Visual Stream (DVS) and the Posterior Parietal Cortex (PPC) implement visually guided goal-directed behavior with novel capacity to resolve multi-step tasks. According to the theory, the PPC maintains a high-level internal representation of the causes of the environment (belief), including bodily states and objects in the scene, and by generating sensory predictions and comparing them with observations it is able to learn and infer the causal relationships and latent states of the external world. We propose that multi-task goal-directed behavior may be achieved by decomposing the belief dynamics into a set of intention functions that independently pull the belief towards different goals; multi-step tasks could be solved by dynamically modulating these intentions within the PPC. This low-level solution in continuous time is applicable to multi-phase actions consisting of a priori defined steps as an alternative to the more general hybrid discrete-continuous approach. As a demonstration, we emulated an agent embodying an actuated upper limb and proprioceptive, visual and tactile sensory systems. Visual information was obtained with the help of a Variational Autoencoder (VAE) simulating the DVS, which allows to dynamically infer the current posture configuration through prediction error minimization and, importantly, an intended future posture corresponding to the visual targets. We assessed the approach on a task including two steps: reaching a target and returning to a home position. We show that by defining a functional that governs the activation of different intentions implementing the corresponding steps, the agent can easily solve the overall task.

Supported by European Union H2020-EIC-FETPROACT-2019 grant 951910 to IPS and Italian PRIN grant 2017KZNZLN to IPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, R.A.: Encoding of intention and spatial location in the posterior parietal cortex. Cereb. Cortex 5(5), 457–469 (1995). https://doi.org/10.1093/cercor/5.5.457

    Article  Google Scholar 

  2. Baioumy, M., Duckworth, P., Lacerda, B., Hawes, N.: Active inference for integrated state-estimation, control, and learning. arXiv (2020)

    Google Scholar 

  3. Baldauf, D., Cui, H., Andersen, R.A.: The posterior parietal cortex encodes in parallel both goals for double-reach sequences. J. Neurosci. 28(40), 10081–10089 (2008). https://doi.org/10.1523/JNEUROSCI.3423-08.2008

    Article  Google Scholar 

  4. Breveglieri, R., Galletti, C., Dal Bò, G., Hadjidimitrakis, K., Fattori, P.: Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area V6A. J. Cogn. Neurosci. 26(4), 879–895 (2014). https://doi.org/10.1162/jocn_a_00510

  5. Cisek, P., Kalaska, J.F.: Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010). https://doi.org/10.1146/annurev.neuro.051508.135409

    Article  Google Scholar 

  6. Desmurget, M., Epstein, C.M., Turner, R.S., Prablanc, C., Alexander, G.E., Grafton, S.T.: PPC and visually directing reaching to targets. Nat. Ne 2(6), 563–567 (1999). https://doi.org/10.1038/9219

  7. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010). https://doi.org/10.1038/nrn2787

    Article  Google Scholar 

  8. Friston, K.: What is optimal about motor control? Neuron 72(3), 488–498 (2011). https://doi.org/10.1016/j.neuron.2011.10.018

    Article  Google Scholar 

  9. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010). https://doi.org/10.1007/s00422-010-0364-z

    Article  Google Scholar 

  10. Friston, K.J., Parr, T., de Vries, B.: The graphical brain: belief propagation and active inference 1(4), 381–414 (2017). https://doi.org/10.1162/NETNa00013

  11. Friston, K.J., Rosch, R., Parr, T., Price, C., Bowman, H.: Deep temporal models and active inference. Neurosci. Biobehav. Rev. 77, 388–402 (2017). https://doi.org/10.1016/j.neubiorev.2017.04.009

    Article  Google Scholar 

  12. Galletti, C., Fattori, P.: The dorsal visual stream revisited: stable circuits or dynamic pathways? Cortex 98, 203–217 (2018). https://doi.org/10.1016/j.cortex.2017.01.009

    Article  Google Scholar 

  13. Gamberini, M., Passarelli, L., Filippini, M., Fattori, P., Galletti, C.: Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct. Funct. 226(9), 2951–2966 (2021). https://doi.org/10.1007/s00429-021-02377-7

    Article  Google Scholar 

  14. Grimbergen, S., Van Hoof, C., Mohajerin Esfahani, P., Wisse, M.: Active inference for state space models: a tutorial (2019). https://doi.org/10.13140/RG.2.2.23596.10884

  15. Li, Y., Cui, H.: Dorsal parietal area 5 encodes immediate reach in sequential arm movements. J. Neurosci. 33(36), 14455–14465 (2013). https://doi.org/10.1523/JNEUROSCI.1162-13.2013

    Article  Google Scholar 

  16. Oliver, G., Lanillos, P., Cheng, G.: Active inference body perception and action for humanoid robots (2019). http://arxiv.org/abs/1906.03022

  17. Parr, T., Friston, K.J.: The discrete and continuous brain: from decisions to Movement-And Back Again, no. September, pp. 2319–2347 (2018). https://doi.org/10.1162/NECO

  18. Parr, T., Rikhye, R.V., Halassa, M.M., Friston, K.J.: Prefrontal computation as active inference. Cereb. Cortex 30(2), 682–695 (2020). https://doi.org/10.1093/cercor/bhz118

    Article  Google Scholar 

  19. Pio-Lopez, L., Nizard, A., Friston, K., Pezzulo, G.: Active inference and robot control: a case study. J. R. Soc. Interface 13(122), 20160616 (2016). https://doi.org/10.1098/rsif.2016.0616

  20. Priorelli, M., Stoianov, I.P.: Flexible intentions in the posterior parietal cortex: an active inference theory. bioRxiv, pp. 1–36 (2022). https://doi.org/10.1101/2022.04.08.487597

  21. Sajid, N., Ball, P.J., Parr, T., Friston, K.J.: Active inference: demystified and compared. Neural Comput. 33(3), 674–712 (2021). https://doi.org/10.1162/neco_a_01357

  22. Sancaktar, C., van Gerven, M.A.J., Lanillos, P.: End-to-End pixel-based deep active inference for body perception and action (2020). https://doi.org/10.1109/icdl-epirob48136.2020.9278105

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Priorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priorelli, M., Stoianov, I.P. (2023). Intention Modulation for Multi-step Tasks in Continuous Time Active Inference. In: Buckley, C.L., et al. Active Inference. IWAI 2022. Communications in Computer and Information Science, vol 1721. Springer, Cham. https://doi.org/10.1007/978-3-031-28719-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28719-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28718-3

  • Online ISBN: 978-3-031-28719-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics