Skip to main content

Modeling with Words: Steps Towards a Fuzzy Quantum Logic

  • Conference paper
  • First Online:
Nature of Computation and Communication (ICTCC 2022)

Abstract

On 1936, Birkhoff and von Newmann proposed the introduction of a “quantum logic”, as the lattice of quantum mechanical proposition which is not distributive and also not a Boolean. Seven years later, Mackey tried to provide a set of axioms for the propositional system to predict of the outcome set of experiments. He indicated that the system is an orthocomplemented partially ordered set. Physical complex systems can be modeled by using linguistic variables which are variables whose values may be expressed in terms of a specific natural or artificial language, for example \(\mathbb {L}\)= {very less young; less young; young; more young; very young; very very young ...}. In language of hedge algebra (\(\mathbb{H}\mathbb{A}\)), \(\mathbb {L}\) set which is generated from \(\mathbb{H}\mathbb{A}\) is the POSET (partial order set). In this paper, we introduce a quantum logic \(\ell \) to assert that, let \(\bot \) be the orthocomplementation map \(\bot : \ell \rightarrow \ell \), all \(\clubsuit , \spadesuit \in \bot \) must satisfy the following conditions:

  • \((\clubsuit ^\bot )^\bot =\clubsuit \)

  • If \(\spadesuit \le \clubsuit \) then \(\clubsuit ^\bot \le \spadesuit ^\bot \)

  • The greatest lower bound \(\clubsuit \vee \clubsuit ^\bot \in \ell \) and the least upper bound \(\clubsuit \wedge \clubsuit ^\bot \in \ell \)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caarvalho, J.: On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences. Fuzzy Sets Syst. 214, 6–19 (2013)

    Article  MathSciNet  Google Scholar 

  3. Deng, J., Deng, Y.: QZNs: quantum z-numbers. arXiv:2104.05190 (2021)

  4. Dvure\(\check{c}\)enskij, A.: Gleason’s Theorem and Its Applications. Mathematics and its Applications. Springer, Heidelberg (1993). https://doi.org/10.1007/978-94-015-8222-3

  5. Engesser, K., Gabbay, D.M., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures. Elsevier Science (2009)

    Google Scholar 

  6. Frias, M., Filiberto Y., Nápoles, G., Vahoof, K., Bello, R.: Fuzzy cognitive maps reasoning with words: an ordinal approach. In: ISFUROS (2017)

    Google Scholar 

  7. Glykas, M.: Fuzzy Cognitive Maps, Advances in Theory, Tools and Applications. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2

    Book  MATH  Google Scholar 

  8. Van Han, N., Hao, N.C., Vinh, P.C.: Toward aggregating fuzzy graphs a model theory approach. In: Vinh, P.C., Rakib, A. (eds.) ICCASA/ICTCC -2019. LNICST, vol. 298, pp. 215–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34365-1_17

    Chapter  Google Scholar 

  9. Van Han, N., Vinh, P.C.: Modeling with words based on hedge algebra. In: Cong Vinh, P., Alagar, V. (eds.) ICCASA/ICTCC -2018. LNICST, vol. 266, pp. 211–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06152-4_18

    Chapter  Google Scholar 

  10. Van Han, N., Vinh, P.C.: Toward modeling and reasoning with words based on hedge algebra. EAI Endors. Trans. Context-Aware Syst. Appl. 5(15), e5 (2018)

    Google Scholar 

  11. Han, N.V., Vinh, P.C., Phung, B.M., Dan, T.N.: Hidden pattern: toward decision support fuzzy systems. In: Cong Vinh, P., Rakib, A. (eds.) ICCASA 2021. LNICST, vol. 409, pp. 71–76. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93179-7_6

    Chapter  Google Scholar 

  12. Ho, N.C., Long, N.V.: Fuzziness measure on complete hedge algebras and quantifying semantics of terms in linear hedge algebras. Fuzzy Sets Syst. 158(4), 452–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ho, N.C., Son, T.T., Khang, T.D., Viet, L.X.: Fuzziness measure, quantified semantic mapping and interpolative method of approximate reasoning in medical expert systems. J. Comput. Sci. Cybern. 18(3), 237–252 (2002)

    Google Scholar 

  14. Ho, N.C., Wechler, W.: Hedge algebras: an algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets Syst. 35(3), 281–293 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zadeh, L.A.: Computing with Words - Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27473-2

    Book  MATH  Google Scholar 

  17. Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. W.A Benjamin (1963)

    Google Scholar 

  18. Mannucci, M.A.: Quantum fuzzy sets: blending fuzzy set theory and quantum computation. arXiv:cs/0604064 (2006)

  19. Nguyen, C.-H., Huynh, V.-N.: An algebraic approach to linguistic hedges in Zadeh’s fuzzy logic. Fuzzy Sets Syst. 129(2), 229–254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papageorgiou, E.I.: Fuzzy Cognitive Maps for Applied Science and Engineering From Fundamentals to Extensions and Learning Algorithms. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39739-4

    Book  Google Scholar 

  21. Pykacz, J.: Quantum Physics, Fuzzy Sets and Logic: Steps Towards a Many-Valued Interpretation of Quantum Mechanics. SpringerBriefs in Physics, Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-19384-7

    Book  MATH  Google Scholar 

  22. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zadeh, L.A., Kacprzyk, J.: Computing with Word in Information Intelligent System 1. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-7908-1873-4

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Cong Vinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Han, N., Vinh, P.C. (2023). Modeling with Words: Steps Towards a Fuzzy Quantum Logic. In: Phan, C.V., Nguyen, T.D. (eds) Nature of Computation and Communication. ICTCC 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 473. Springer, Cham. https://doi.org/10.1007/978-3-031-28790-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28790-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28789-3

  • Online ISBN: 978-3-031-28790-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics