Skip to main content

Adaptive Expert Models for Federated Learning

  • Conference paper
  • First Online:
Trustworthy Federated Learning (FL 2022)

Abstract

Federated Learning (FL) is a promising framework for distributed learning when data is private and sensitive. However, the state-of-the-art solutions in this framework are not optimal when data is heterogeneous and non-IID. We propose a practical and robust approach to personalization in FL that adjusts to heterogeneous and non-IID data by balancing exploration and exploitation of several global models. To achieve our aim of personalization, we use a Mixture of Experts (MoE) that learns to group clients that are similar to each other, while using the global models more efficiently. We show that our approach achieves an accuracy up to 29.78% better than the state-of-the-art and up to 4.38% better compared to a local model in a pathological non-IID setting, even though we tune our approach in the IID setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code for the experiments can be found at https://github.com/EricssonResearch/fl-moe.

References

  1. Bonawitz, K., Eichner, H., et al.: Towards federated learning at scale: system design. In: Proceedings of Machine Learning and Systems (MLSys), Stanford, CA, USA (2019). https://proceedings.mlsys.org/book/271.pdf

  2. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018). https://doi.org/10.1137/16M1080173, https://epubs.siam.org/doi/10.1137/16M1080173

  3. Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on non-IID data. In: International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom. IEEE (2020). https://doi.org/10.1109/IJCNN48605.2020.9207469

  4. Caldas, S., et al.: LEAF: a benchmark for federated settings. CoRR abs/1812.01097 (2018). http://arxiv.org/abs/1812.01097

  5. Cohen, G., Afshar, S., Jonathan, T., van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA. IEEE (2017). https://doi.org/10.1109/IJCNN.2017.7966217

  6. Deng, Y., Kamani, M.M., Mahdavi, M.: Adaptive personalized federated learning. CoRR abs/2003.13461 (2020). https://arxiv.org/abs/2003.13461

  7. Diao, E., Ding, J., Tarokh, V.: HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients. In: 9th International Conference on Learning Representations (ICLR), Austria (2021). https://openreview.net/forum?id=TNkPBBYFkXg

  8. Berggren, V., Inam, R., Mokrushin, L., Hata, A., Jeong, J., Mohalik, S.K., Forgeat, J., Sorrentino, S.: Artificial intelligence and machine learning in next-generation systems. Technical report, Ericsson Research, Ericsson AB (2018). https://www.ericsson.com/en/white-papers/machine-intelligence

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, NSW, Australia. PMLR (2017). https://doi.org/10.5555/3305381.3305498, http://proceedings.mlr.press/v70/finn17a.html

  10. GDPR: Regulation (EU) 2016/679 on the protection of natural persons with regard to the processing of personal data and the free movement of such data (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504

  11. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2020). https://proceedings.neurips.cc/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf

  12. Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models. CoRR abs/2002.05516 (2020). https://arxiv.org/abs/2002.05516

  13. He, C., Annavaram, M., Avestimehr, S.: FedNAS: federated deep learning via neural architecture search. CoRR abs/2004.08546 (2020). https://arxiv.org/abs/2004.08546

  14. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.B.: The non-IID data quagmire of decentralized machine learning. In: Proceedings of the 37th International Conference on Machine Learning (ICML). PMLR (2020). http://proceedings.mlr.press/v119/hsieh20a.html

  15. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991). https://doi.org/10.1162/neco.1991.3.1.79, https://ieeexplore.ieee.org/document/6797059

  16. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under non-IID private data. CoRR abs/1811.11479 (2018). http://arxiv.org/abs/1811.11479

  17. Jiang, Y., Konečný, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. CoRR abs/1909.12488 (2019). http://arxiv.org/abs/1909.12488

  18. Kairouz, P., McMahan, H.B., et al., B.A.: Advances and open problems in federated learning, vol. 14, pp. 1–210 (2021). https://doi.org/10.1561/2200000083

  19. Kim, Y., Hakim, E.A., Haraldson, J., Eriksson, H., da Silva Jr., J.M.B., Fischione, C.: Dynamic clustering in federated learning. In: International Conference on Communications (ICC), Montreal, QC, Canada, pp. 1–6. IEEE (2021). https://doi.org/10.1109/ICC42927.2021.9500877

  20. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009). https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

  21. Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. CoRR abs/1910.03581 (2019). http://arxiv.org/abs/1910.03581

  22. Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: fair and robust federated learning through personalization. In: Proceedings of the 38th International Conference on Machine Learning (ICML). PMLR (2021). http://proceedings.mlr.press/v139/li21h.html

  23. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: a research platform for distributed model selection and training. CoRR abs/1807.05118 (2018). http://arxiv.org/abs/1807.05118

  24. Listo Zec, E., Mogren, O., Martinsson, J., Sütfeld, L.R., Gillblad, D.: Federated learning using a mixture of experts. CoRR abs/2010.02056 (2020). https://arxiv.org/abs/2010.02056

  25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations (ICLR), New Orleans, LA, USA (2019). https://openreview.net/forum?id=Bkg6RiCqY7

  26. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. CoRR abs/2002.10619 (2020). https://arxiv.org/abs/2002.10619

  27. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA. PMLR (2017). http://proceedings.mlr.press/v54/mcmahan17a.html

  28. Mu, X., et al.: FedProc: prototypical contrastive federated learning on non-IID data. CoRR abs/2109.12273 (2021). https://arxiv.org/abs/2109.12273

  29. Peterson, D.W., Kanani, P., Marathe, V.J.: Private federated learning with domain adaptation. CoRR abs/1912.06733 (2019). http://arxiv.org/abs/1912.06733

  30. Shi, C., Shen, C., Yang, J.: Federated multi-armed bandits with personalization. In: The 24th International Conference on Artificial Intelligence and Statistics (AISTATS) (2021). http://proceedings.mlr.press/v130/shi21c.html

  31. Sutton, R.S.: Generalization in reinforcement learning: successful examples using sparse coarse coding. In: Advances in Neural Information Processing Systems (NeurIPS). MIT Press (1995). https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf

  32. Tijani, S.A., Ma, X., Zhang, R., Jiang, F., Doss, R.: Federated learning with extreme label skew: a data extension approach. In: International Joint Conference on Neural Networks (IJCNN), Shenzhen, China. IEEE (2021). https://doi.org/10.1109/IJCNN52387.2021.9533879

  33. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Federated evaluation of on-device personalization. CoRR abs/1910.10252 (2019). http://arxiv.org/abs/1910.10252

  34. Wu, S., et al.: Motley: benchmarking heterogeneity and personalization in federated learning. CoRR abs/2206.09262 (2022). https://doi.org/10.48550/arXiv.2206.09262

Download references

Acknowledgment

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

The computations were enabled by the supercomputing resource Berzelius provided by National Supercomputer Centre at Linköping University and the Knut and Alice Wallenberg foundation.

We thank all reviewers who made suggestions to help improve and clarify this manuscript, especially Dr. A. Alam, F. Cornell, Dr. R. Gaigalas, T. Kvernvik, C. Svahn, F. Vannella, Dr. H. Shokri Ghadikolaei, D. Sandberg and Prof. S. Haridi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Isaksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isaksson, M., Listo Zec, E., Cöster, R., Gillblad, D., Girdzijauskas, S. (2023). Adaptive Expert Models for Federated Learning. In: Goebel, R., Yu, H., Faltings, B., Fan, L., Xiong, Z. (eds) Trustworthy Federated Learning. FL 2022. Lecture Notes in Computer Science(), vol 13448. Springer, Cham. https://doi.org/10.1007/978-3-031-28996-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28996-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28995-8

  • Online ISBN: 978-3-031-28996-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics