Skip to main content

Scattering with Programmable Matter

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 661))

Abstract

We aim at studying the Scattering problem (or Distancing) in the context of Programmable Matter (PM). This is intended as some kind of matter with the ability to change its physical properties (e.g., shape or color) in a programmable way. PM can be implemented by assembling a system of self-organizing computational entities, called particles, that can be programmed via distributed algorithms. A rather weak model proposed in the literature for PM is \(\textsf{SILBOT}\), where particles are all identical, executing the same algorithm based on their local neighborhood. They have no direct means of communication and are disoriented. We aim to achieve Scattering, i.e., all particles are at least two hops far apart from each other. We show that the problem is unsolvable within the pure asynchronous setting whereas we do provide a resolution algorithm for the event-driven case where a particle reacts to the presence of other particles in its neighborhood. Furthermore, we investigate (also by simulations) on configurations where some nodes of the grid can be occupied by obstacles, i.e., immovable but recognizable elements.

Work funded in part by the Italian National Group for Scientific Computation GNCS-INdAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazzi, R.A., Briones, J.L.: Brief announcement: deterministic leader election in self-organizing particle systems. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 381–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_25

    Chapter  Google Scholar 

  2. Bonini, S.: Programmable matter simulator (2022). https://github.com/samul-1/unipi_programmable_matter

  3. Bramas, Q., Tixeuil, S.: The random bit complexity of mobile robots scattering. Int. J. Found. Comput. Sci. 28(2), 111–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distrib. Comput. 32(2), 91–132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cicerone, S., Di Stefano, G., Navarra, A.: Solving the pattern formation by mobile robots with chirality. IEEE Access 9, 88177–88204 (2021). https://doi.org/10.1109/ACCESS.2021.3089081

    Article  Google Scholar 

  6. Cicerone, S., Di Stefano, G., Navarra, A.: A structured methodology for designing distributed algorithms for mobile entities. Inf. Sci. 574, 111–132 (2021). https://doi.org/10.1016/j.ins.2021.05.043

    Article  MathSciNet  Google Scholar 

  7. D’Angelo, G., D’Emidio, M., Das, S., Navarra, A., Prencipe, G.: Asynchronous silent programmable matter achieves leader election and compaction. IEEE Access 8, 207,619–207,634 (2020)

    Google Scholar 

  8. Daymude, J.J., Gmyr, R., Hinnenthal, K., Kostitsyna, I., Scheideler, C., Richa, A.W.: Convex hull formation for programmable matter. In: ICDCN 2020. ACM (2020)

    Google Scholar 

  9. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader election and shape formation with self-organizing programmable matter. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_8

    Chapter  MATH  Google Scholar 

  10. Dolev, S., Frenkel, S., Rosenblit, M., Narayanan, R., Muni Venkateswarlu, K.: In-vivo energy harvesting nano robots. In: 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE) (2016). https://doi.org/10.1109/icsee.2016.7806107

  11. Dufoulon, F., Kutten, S., Moses Jr., W.K.: Efficient deterministic leader election for programmable matter. In: Miller, A., Censor-Hillel, K., Korhonen, J.H. (eds.) PODC: ACM Symposium on Principles of Distributed Computing, pp. 103–113. ACM (2021)

    Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N.: Moving and computing models: robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_1

  13. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izumi, T., Kaino, D., Potop-Butucaru, M.G., Tixeuil, S.: On time complexity for connectivity-preserving scattering of mobile robots. Theor. Comput. Sci. 738, 42–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miyashita, S., Guitron, S., Li, S., Rus, D.: Robotic metamorphosis by origami exoskeletons. Sci. Robot. 2(10) (2017)

    Google Scholar 

  16. Tracolli, M.: Programmable matter simulator (2022). https://github.com/MircoT/programmable-matter-simulator

  17. Tucci, T., Piranda, B., Bourgeois, J.: A distributed self-assembly planning algorithm for modular robots. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, pp. 550–558. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2018)

    Google Scholar 

  18. Winkler, P.: The adventures of Ant Alice. In: A Lifetime of Puzzles, pp. 177–185. CRC Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Navarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navarra, A., Prencipe, G., Bonini, S., Tracolli, M. (2023). Scattering with Programmable Matter. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-031-29056-5_22

Download citation

Publish with us

Policies and ethics