Skip to main content

Group Testing Aggregate Signatures with Soundness

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2022 (ICISC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13849))

Included in the following conference series:

  • 6545 Accesses

Abstract

In this paper, we comprehensively study group testing aggregate signatures that have functionality of both keyless aggregation of multiple signatures and identifying an invalid message from the aggregate signature, in order to reduce a total amount of signature-size for lots of messages. Our contribution is (i) to formalize strong security notions including soundness for group testing aggregate signatures by taking into account related work such as fault-tolerant aggregate signatures and non-interactive aggregate MACs with detecting functionality (i.e., symmetric case); (ii) to construct group testing aggregate signatures from aggregate signatures in a generic and comprehensive way; and (iii) to present an aggregate signature scheme which we can apply to our generic construction of group testing aggregate signatures with the formalized security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We should notice the difference between \(\mathsf {asig- soundness}\) and batch verification, as follows: In the \(\mathsf {asig- soundness}\) game, the adversary is allowed to generate key-pairs except for the key-pair generated by the challenger, while batch verification requires all key-pairs to be generated according to the key generation algorithm. See [5] on details of the definition of batch verification.

  2. 2.

    One may wonder if the detecting functionality of GT-ASIGs can be achieved by cryptographic methodology, rather than combinatorial methodology (i.e., group testing with d-disjunct matrices). However, to the best of our knowledge, the property of d-disjunct matrices is necessary to achieve the non-interactive detecting functionality, in a practical way. As described in Conclusion, constructing an aggregate signature scheme with this functionality (in a practical way) is important as future work in this research.

  3. 3.

    \(J = \emptyset \) means that the given pairs of public keys and signed messages are all valid.

References

  1. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: EUROCRYPT. LNCS, vol. 1403, pp. 236–250. Springer (1998)

    Google Scholar 

  2. Boneh, D., Drijvers, M., Neven, G.: Compact Multi-signatures for Smaller Blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15

    Chapter  Google Scholar 

  3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26

    Chapter  Google Scholar 

  4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptology 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch Verification of Short Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_14

    Chapter  Google Scholar 

  6. Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14(4), 436–440 (1943)

    Article  Google Scholar 

  7. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series on Applied Mathematics, 2nd edn. vol. 12. World Scientific (2000)

    Google Scholar 

  8. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signature batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 309–324. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_21

    Chapter  Google Scholar 

  10. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_17

    Chapter  Google Scholar 

  11. Hartung, G., Kaidel, B., Koch, A., Koch, J., Rupp, A.: Fault-tolerant aggregate signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 331–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_13

    Chapter  Google Scholar 

  12. Hirose, S., Shikata, J.: Aggregate message authentication code capable of non-adaptive group-testing. IEEE Access 8, 216116–216126 (2020)

    Article  Google Scholar 

  13. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_27

    Chapter  Google Scholar 

  14. Hwang, F.K.: A method for detecting all defective members in a population by group testing. J. Am. Stat. Assoc. 67(339), 605–608 (1972)

    Article  MATH  Google Scholar 

  15. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79263-5_10

    Chapter  Google Scholar 

  16. Li, C.H.: A sequential method for screening experimental variables. J. Am. Stat. Assoc. 57(298), 455–477 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Minematsu, K.: Efficient message authentication codes with combinatorial group testing. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 185–202. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_10

    Chapter  Google Scholar 

  18. Minematsu, K., Kamiya, N.: Symmetric-key corruption detection: when XoR-macs meet combinatorial group testing. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 595–615. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_29

    Chapter  Google Scholar 

  19. Ogawa, Y., Sato, S., Shikata, J., Imai, H.: Aggregate message authentication codes with detecting functionality from biorthogonal codes. In: 2020 IEEE International Symposium on Information Theory (ISIT 2020). IEEE (2020)

    Google Scholar 

  20. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_61

    Chapter  Google Scholar 

  21. Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1_76

  22. Sato, S., Hirose, S., Shikata, J.: Sequential aggregate MACs with detecting functionality revisited. In: Liu, J.K., Huang, X. (eds.) NSS 2019. LNCS, vol. 11928, pp. 387–407. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36938-5_23

  23. Sato, S., Shikata, J.: Interactive aggregate message authentication scheme with detecting functionality. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 1316–1328. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_110

  24. Sato, S., Shikata, J.: Interactive aggregate message authentication equipped with detecting functionality from adaptive group testing. In: Cryptology ePrint Archive. IACR, October 2020

    Google Scholar 

  25. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the shifted transversal design. BMC Bioinform. 7, 28 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is in part based on results obtained from a project, JPNP16007, commissioned by the New Energy and Industrial Technology Development Organization (NEDO). In addition, this work was in part supported by JSPS KAKENHI Grant Numbers JP22K19773, JP21H03395. The authors would like to thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Sato .

Editor information

Editors and Affiliations

Appendix A: Bilinear Groups for Co-Diffie-Hellman

Appendix A: Bilinear Groups for Co-Diffie-Hellman

We define bilinear groups for co-Diffie-Hellman, which are used in the aggregate signature scheme of [3]. The following notation is used: \(G_1\), \(G_2\), and \(G_T\) are multiplicative cyclic groups of prime order p. \(g_1\) and \(g_2\) are generators of \(G_1\) and \(G_2\), respectively. \(\phi : G_2 \rightarrow G_1\) is an isomorphism with \(\phi (g_2) = g_1\). \(e: G_1 \times G_2 \rightarrow G_T\) is a bilinear map. Then, Co-computational Diffie-Hellman (\(\mathsf {co- CDH}\)) problem, co-decision Diffie-Hellman (\(\mathsf {co- DDH}\)) problem, and co-Gap Diffie-Hellman (\(\mathsf {co- GDH}\)) group pairs are defined.

Definition 10

( \(\mathsf {co- CDH}\) and \(\mathsf {co- DDH}\) problems).

  • \(\mathsf {co- CDH}\). Given \(g_2,g_2^a \in G_2\) and \(h \in G_1\), compute \(h^a \in G_1\)

  • \(\mathsf {co- DDH}\). Given \(g_2, g_2^a \in G_2\) and \(h,h^b \in G_1\), determine if \(a = b\) or not.

In [4], it is known that in the case of \(G_1 = G_2\) and \(g_1 = g_2\), there are reductions from \(\mathsf {co- CDH}\) and \(\mathsf {co- DDH}\) to the standard CDH and DDH problems, respectively.

Next, co-Gap Diffie-Hellman (\(\mathsf {co- GDH}\)) group pairs are defined, as follows.

Definition 11 (Decision Group Pair)

The pair \((G_1,G_2)\) of two groups is a decision group pair for co-Diffie-Hellman if the group action on \(G_1\), the group action on \(G_2\), and the map \(\phi \) from \(G_2\) to \(G_1\) can be computed in one time unit, and co-decision Diffie-Hellman on \((G_1,G_2)\) can be solved in one time unit.

Definition 12 (Co-GDH Group Pair)

Suppose two groups \(G_1,G_2\) are selected by following a security parameter \(\lambda \). The advantage of a PPT algorithm \(\textsf{A}\) solving the \(\mathsf {co- CDH}\) problem in groups \(G_1,G_2\) is defined as \(\textsf{Adv}_{\textsf{A}}^{co-cdh }(\lambda ) := \Pr [\textsf{A}(g_2,g_2^a,h) \rightarrow h^a \mid a \overset{\tiny \$}{\leftarrow }\mathbb {Z}_p, h \overset{\tiny \$}{\leftarrow }G_1]\). The pair \((G_1,G_2)\) is a \(\mathsf {co- GDH}\) group pair if the pair is a decision group pair for co-Diffie-Hellman, and \(\textsf{Adv}_{\textsf{A}}^{co-cdh }(\lambda ) \le \textsf{negl}(\lambda )\) holds for any PPT algorithm \(\textsf{A}\).

We define bilinear group pairs for co-Diffie-Hellman, which are used in the aggregate signature scheme of [3].

Definition 13 (Bilinear Group Pair for co-Diffie-Hellman)

Suppose two groups \(G_1,G_2\) are selected by following a security parameter \(\lambda \). The pair \((G_1,G_2)\) is a bilinear group pair if the group action on either can be computed in one time unit, the map \(\phi \) from \(G_2\) to \(G_1\) can be computed in one time unit, a bilinear map e is computable in one time unit. Furthermore, the pair \((G_1,G_2)\) is a bilinear group pair for co-Diffie-Hellman if it is a bilinear group pair and \(\textsf{Adv}_{\textsf{A}}^{co-cdh }(\lambda ) \le \textsf{negl}(\lambda )\) holds for any PPT algorithm \(\textsf{A}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, S., Shikata, J., Matsumoto, T. (2023). Group Testing Aggregate Signatures with Soundness. In: Seo, SH., Seo, H. (eds) Information Security and Cryptology – ICISC 2022. ICISC 2022. Lecture Notes in Computer Science, vol 13849. Springer, Cham. https://doi.org/10.1007/978-3-031-29371-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29371-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29370-2

  • Online ISBN: 978-3-031-29371-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics