Skip to main content

WOTSwana: A Generalized \(\mathcal {S}_{\text{ leeve }}\) Construction for Multiple Proofs of Ownership

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2022 (ICISC 2022)

Abstract

The \(\mathcal {S}_{\text{ leeve }}\) construction proposed by Chaum et al. (ACNS’21) introduces an extra security layer for digital wallets by allowing users to generate a “back up key” securely nested inside the secret key of a signature scheme, i.e., ECDSA. The “back up key”, which is secret, can be used to issue a “proof of ownership”, i.e., only the real owner of this secret key can generate a single proof, which is based on the WOTS+ signature scheme. The authors of \(\mathcal {S}_{\text{ leeve }}\) proposed the formal technique for a single proof of ownership, and only informally outlined a construction to generalize it to multiple proofs. This work identifies that their proposed construction presents drawbacks, i.e., varying of signature size and signing/verifying computation complexity, limitation of linear construction, etc. Therefore we introduce WOTSwana, a generalization of \(\mathcal {S}_{\text{ leeve }}\), which is, more concretely, a more general scheme, i.e. an extra security layer that generates multiple proofs of ownership, and put forth a thorough formalization of two constructions: (1) one given by a linear concatenation of numerous WOTS+ private/public keys, and (2) a construction based on tree like structure, i.e., an underneath Merkle tree whose leaves are WOTS+ private/public key pairs. Furthermore, we present the security analysis for multiple proofs of ownership, showcasing that this work addresses the early mentioned drawbacks of the original construction. In particular, we extend the original security definition for \(\mathcal {S}_{\text{ leeve }}\). Finally, we illustrate an alternative application of our construction, by discussing the creation of an encrypted group chat messaging application.

This work was supported by JSPS KAKENHI Grant Number JP21K11882.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: Ladderleak: Breaking ECDSA with less than one bit of nonce leakage. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS 2020, New York, NY, USA, pp. 225–242. Association for Computing Machinery (2020)

    Google Scholar 

  2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Mannan, M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018: 25th Conference on Computer and Communications Security, Toronto, ON, Canada, October 15–19, pp. 913–930. ACM Press (2018)

    Google Scholar 

  3. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The SPHINCS\(^+\) signature framework. In: Cavallaro, L., Kinder, J., Wang, X.F., Katz, J. (eds.), ACM CCS 2019: 26th Conference on Computer and Communications Security, 11–15 November 2019, pp. 2129–2146. ACM Press (2019)

    Google Scholar 

  4. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implementations for the tls 1.3 standard candidate. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 483–502 (2017)

    Google Scholar 

  5. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8

    Chapter  Google Scholar 

  6. Chaum, D., Larangeira, M., Yaksetig, M.: Tweakable sleeve: a novel sleeve construction based on tweakable hash functions. In: The 3rd International Conference on Mathematical Research for Blockchain Economy (MARBLE) (2022)

    Google Scholar 

  7. Chaum, D., Larangeira, M., Yaksetig, M., Carter, W.: Wots+ up my sleeve! a hidden secure fallback for cryptocurrency wallets. In: International Conference on Applied Cryptography and Network Security, pp. 195–219. Springer (2021)

    Google Scholar 

  8. Chen, L.: Recommendation for key derivation using pseudorandom functions-revision 1. NIST special publication (2021). Accessed 20 Feb 2022

    Google Scholar 

  9. Courtois, N.T., Emirdag, P., Valsorda, F.: Private key recovery combination attacks: on extreme fragility of popular bitcoin key management, wallet and cold storage solutions in presence of poor RNG events. Cryptology ePrint Archive, Report 2014/848 (2014). http://eprint.iacr.org/2014/848

  10. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_8

    Chapter  Google Scholar 

  11. Das, P., Faust, S., Loss, J.: A formal treatment of deterministic wallets. In: Cavallaro, L., Kinder, J., Wang, X.F., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and Communications Security, 11–15 November 2019, pp. 651–668. ACM Press (2019)

    Google Scholar 

  12. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3

    Chapter  Google Scholar 

  13. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2), 198–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, C.-I., Tseng, Y.-F., Su, H.-P., Hsu, R.-H., Kikuchi, H.: Secure hierarchical bitcoin wallet scheme against privilege escalation attacks. Int. J. Inf. Secur. 19, 245–255 (2019)

    Article  Google Scholar 

  15. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_10

    Chapter  Google Scholar 

  16. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  17. Kobeissi, N.: Verifpal: Cryptographic Protocol Analysis for Students and Engineers (2021). https://verifpal.com. Accessed 05 Mar 2022

  18. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure messaging protocols and their implementations: a symbolic and computational approach. In: 2017 IEEE European Symposium on Security and Privacy (EuroS P), pp. 435–450 (2017)

    Google Scholar 

  19. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: cryptographic protocol analysis for the real world. In: Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop, CCSW 2020, New York, NY, USA, 2020, pp. 159. Association for Computing Machinery (2020)

    Google Scholar 

  20. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_34

    Chapter  Google Scholar 

  21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)

    Google Scholar 

  22. Specter, M.A., Park, S., Green, M.: Keyforge: non-attributable email from forward-forgeable signatures. In: Bailey, M., Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, August 11–13, 2021, pp. 1755–1773. USENIX Association (2021)

    Google Scholar 

  23. Trinity attack incident part 1: Summary and next steps. https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8. Accessed 22 Sept 2020

  24. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)

    Google Scholar 

  25. xx network. Wotswana verifpal model. https://github.com/xx-labs/wotswana

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Larangeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaum, D., Larangeira, M., Yaksetig, M. (2023). WOTSwana: A Generalized \(\mathcal {S}_{\text{ leeve }}\) Construction for Multiple Proofs of Ownership. In: Seo, SH., Seo, H. (eds) Information Security and Cryptology – ICISC 2022. ICISC 2022. Lecture Notes in Computer Science, vol 13849. Springer, Cham. https://doi.org/10.1007/978-3-031-29371-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29371-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29370-2

  • Online ISBN: 978-3-031-29371-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics