Skip to main content

On the Influence of Microscopic Mobility in Modelling Pedestrian Communication

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2022)

Abstract

In the recent past, wireless network simulations involving pedestrians are getting increasing attention within the research community. Examples are crowd networking, pedestrian communication via Sidelink/D2D, wireless contact tracing to fight the Covid-19 pandemic or the evaluation of Intelligent Transportation Systems (ITS) for the protection of Vulnerable Road Users (VRUs). Since in general the mobile communication depends on the position of the pedestrians, their mobility needs to be modeled. Often simplified mobility models such as the random-waypoint or cellular automata based models are used.

However, for ad hoc networks and Inter-Vehicular Communication (IVC), it is well-known that a detailed model for the microscopic mobility has a strong influence – which is why state-of-the-art simulation frameworks for IVC often combine vehicular mobility and network simulators. Therefore, this paper investigates to what extent a detailed modelling of the pedestrian mobility on an operational level influences the results of Pedestrian-to-X Communication (P2X) and its applications.

We model P2X scenarios within the open-source coupled simulation environment CrowNet. It enables us to simulate the identical P2X scenario while varying the pedestrian mobility simulator as well as the used model. Two communication scenarios (pedestrian to server via 5G New Radio, pedestrian to pedestrian via PC5 Sidelink) are investigated in different mobility scenarios. Initial results demonstrate that time- and location-dependent factors represented by detailed microscopic mobility models can have a significant influence on the results of wireless communication simulations, indicating a need for more detailed pedestrian mobility models in particular for scenarios with pedestrian crowds.

We thank the research office (FORWIN) of the Munich University of Applied Sciences for supporting the research collaboration. The authors gratefully acknowledge the support by the Faculty Graduate Center CeDoSIA of TUM Graduate School at Technical University of Munich, Germany. The authors also acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the framework of roVer (project number 13FH669IX6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.jupedsim.org/; https://www.vadere.org/.

  2. 2.

    https://crownet.org.

  3. 3.

    https://github.com/roVer-HM/crownet/tree/pub_mobmod_unet22.

References

  1. Bazzi, A., Berthet, A.O., Campolo, C., Masini, B.M., Molinaro, A., Zanella, A.: On the design of sidelink for cellular v2x: a literature review and outlook for future. IEEE Access 9, 97953–97980 (2021). https://doi.org/10.1109/access.2021.3094161

    Article  Google Scholar 

  2. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002). https://doi.org/10.1002/wcm.72

    Article  Google Scholar 

  3. Dietrich, F., Disselnkötter, S., Köster, G.: How to get a model in pedestrian dynamics to produce stop and go waves. In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow ’15, pp. 161–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33482-0_21

    Chapter  Google Scholar 

  4. Erdmann, J., Krajzewicz, D.: Modelling pedestrian dynamics in sumo. In: SUMO User Conference 2015. Berichte aus dem DLR-Institut für Verkehrssystemtechnik, vol. 28, pp. 103–118. Deutsches Zentrum für Luft- und Raumfahrt e.V. (2015). https://elib.dlr.de/100554/

  5. ETSI: TR 103 300-1 v2.1.1, intelligent transport system (its); vulnerable road users (VRU) awareness; part 1: Use cases definition; release 2. Technical report, ETSI (2019)

    Google Scholar 

  6. ETSI: TS 103 300-2 v2.2.1, intelligent transport system (its); vulnerable road users (VRU) awareness;part 2: Functional architecture and requirements definition; release 2. Technical report, ETSI (2021). https://www.etsi.org/deliver/etsi_ts/103300_103399/10330002/

  7. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  8. Helgason, O., Kouyoumdjieva, S.T., Karlsson, G.: Does mobility matter? In: 2010 Seventh International Conference on Wireless On-demand Network Systems and Services (WONS). IEEE (2010). https://doi.org/10.1109/wons.2010.5437138

  9. Hess, A., Hummel, K.A., Gansterer, W.N., Haring, G.: Data-driven human mobility modeling. ACM Comput. Surv. 48(3), 1–39 (2015). https://doi.org/10.1145/2840722

    Article  Google Scholar 

  10. Hyytä, E., Virtamo, J.: Random waypoint mobility model in cellular networks. Wirel. Netw. 13(2), 177–188 (2007). https://doi.org/10.1007/s11276-006-4600-3

    Article  Google Scholar 

  11. Kleinmeier, B., Köster, G., Drury, J.: Agent-based simulation of collective cooperation: from experiment to model. J. R. Soc. Interface 17, 20200396 (2020). https://doi.org/10.1098/rsif.2020.0396

    Article  Google Scholar 

  12. Kleinmeier, B., Zönnchen, B., Gödel, M., Köster, G.: Vadere: an open-source simulation framework to promote interdisciplinary understanding. Collective Dynamics 4 (2019). https://doi.org/10.17815/CD.2019.21

  13. Krajzewicz, D., Erdmann, J., Härri, J., Spyropoulos, T.: Including pedestrian and bicycle traffic into the traffic simulation sumo. In: 10th ITS European Congress (2014). https://elib.dlr.de/90621/

  14. Lara, T., Yáñez, A., Céspedes, S., Hafid, A.S.: Impact of safety message generation rules on the awareness of vulnerable road users. Sensors 21(10), 3375 (2021). https://doi.org/10.3390/s21103375

    Article  Google Scholar 

  15. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE (2018). https://doi.org/10.1109/itsc.2018.8569938

  16. Luca, M., Barlacchi, G., Lepri, B., Pappalardo, L.: A survey on deep learning for human mobility. ACM Comput. Surv. 55(1), 1–44 (2021). https://doi.org/10.1145/3485125

    Article  Google Scholar 

  17. Nardini, G., Stea, G., Virdis, A., Sabella, D.: Simu5g: a system-level simulator for 5G networks. In: Proceedings of the 10th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - SIMULTECH, pp. 68–80. INSTICC, SciTePress. https://doi.org/10.5220/0009826400680080

  18. Riebl, R., Gunther, H.J., Facchi, C., Wolf, L.: Artery: extending veins for VANET applications. In: 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE (2015). https://doi.org/10.1109/mtits.2015.7223293

  19. Schuhbäck, S., Daßler, N., Wischhof, L., Köster, G.: Towards a bidirectional coupling of pedestrian dynamics and mobile communication simulation. In: Proceedings of the OMNeT++ Community Summit 2019 (2019). https://doi.org/10.29007/nnfj

  20. Seitz, M.J., Bode, N.W.F., Köster, G.: How cognitive heuristics can explain social interactions in spatial movement. J. R. Soc. Interface 13(121), 20160439 (2016). https://doi.org/10.1098/rsif.2016.0439

    Article  Google Scholar 

  21. Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86(4), 046108 (2012). https://doi.org/10.1103/PhysRevE.86.046108

    Article  Google Scholar 

  22. von Sivers, I.K.M., et al.: Modelling social identification and helping in evacuation simulation. Saf. Sci. 89, 288–300 (2016). https://doi.org/10.1016/j.ssci.2016.07.001

    Article  Google Scholar 

  23. Sommer, C., et al.: Veins: the open source vehicular network simulation framework. In: Virdis, A., Kirsche, M. (eds.) Recent Advances in Network Simulation. EICC, pp. 215–252. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12842-5_6

    Chapter  Google Scholar 

  24. Vogt, R., Nikolaidis, I., Gburzynski, P.: A realistic outdoor urban pedestrian mobility model. Simul. Model. Pract. Theory 26, 113–134 (2012). https://doi.org/10.1016/j.simpat.2012.04.006

    Article  Google Scholar 

  25. Vukadinovic, V., Helgason, Ó.R., Karlsson, G.: A mobility model for pedestrian content distribution. In: Proceedings of the Second International ICST Conference on Simulation Tools and Techniques. ICST (2009). https://doi.org/10.4108/icst.simutools2009.5645

  26. Wegener, A., Piorkowski, M., Raya, M., Hellbrück, H., Fischer, S., Hubaux, J.P.: TraCI: an interface for coupling road traffic and network simulators. In: Proceedings of the 11th Communications and Networking Simulation Symposium on - CNS 2008, pp. 155–163. ACM Press (2008). https://doi.org/10.1145/1400713.1400740

  27. Weidmann, U.: Transporttechnik der Fussgänger, Schriftenreihe des IVT, vol. 90. Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau (IVT) ETH, Zürich, 2 edn. (1993). https://doi.org/10.3929/ethz-b-000242008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wischhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wischhof, L., Kilian, M., Schuhbäck, S., Köster, G. (2023). On the Influence of Microscopic Mobility in Modelling Pedestrian Communication. In: Sabir, E., Elbiaze, H., Falcone, F., Ajib, W., Sadik, M. (eds) Ubiquitous Networking. UNet 2022. Lecture Notes in Computer Science, vol 13853. Springer, Cham. https://doi.org/10.1007/978-3-031-29419-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29419-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29418-1

  • Online ISBN: 978-3-031-29419-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics