Skip to main content

A Novel Hybrid Deep Learning Model for Crop Disease Detection Using BEGAN

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2022)

Abstract

Crop diseases are a considerable threat in the agricultural sector as they adversely affect the production and quality of agricultural products, resulting in heavy economic losses for both farmers and the country. Therefore, early identification and diagnosis of crop diseases at each stage of their lifespan is critical to protect and maximize crop yields. In this paper, we have proposed a novel deep learning model that utilizes the began to generate synthetic images of crop leaves in order to improve the network generalizability. Thereafter, a hybrid InceptionV3 + RF model is trained on real and synthetic images using transfer learning to classify crop leaves images in ten categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi, M., et al.: {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016)

    Google Scholar 

  • Afifi, A., Alhumam, A., Abdelwahab, A.: Convolutional neural network for automatic identification of plant diseases with limited data. Plants 10, 28 (2021). In: s Note: MDPI stays neutral with regard to jurisdictional claims in … (2020)

    Google Scholar 

  • Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. International Conference on Machine Learning (2017)

    Google Scholar 

  • Dayan, P.: Helmholtz machines and wake-sleep learning. In: Handbook of Brain Theory and Neural Network, vol. 44, pp. 1–12. MIT Press, Cambridge, MA (2020)

    Google Scholar 

  • Dumoulin, V., et al.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)

    Google Scholar 

  • Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)

  • Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27(2014)

    Google Scholar 

  • Hinton, G.E.: Deep belief networks. Scholarpedia 4(5), 5947 (2009)

    Article  Google Scholar 

  • Hughes, D., Salathé, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015)

  • Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J Big Data 6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  • Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114(2013)

  • Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy. arXiv preprint arXiv:1710.10686 (2017)

  • Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and prior class probabilities. In: Montavon, G., Orr, G.B., Müller, K. (eds.) Neural networks: Tricks of the trade. LNCS, vol. 7700, pp. 295–309. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_19

    Chapter  Google Scholar 

  • Liu, L., et al.: A disease index for efficiently detecting wheat fusarium head blight using sentinel-2 multispectral imagery. IEEE Access 8, 52181–52191 (2020)

    Article  Google Scholar 

  • Liu, Y., Wang, Y., Zhang, J.: New machine learning algorithm: Random forest. In: International Conference on Information Computing and Applications (2012)

    Google Scholar 

  • Lu, Y., Chen, D., Olaniyi, E., Huang, Y.: Generative adversarial networks (GANs) for image augmentation in agriculture: a systematic review. Comput. Electron. Agric. 200, 107208 (2022)

    Article  Google Scholar 

  • Lucas, G.B., Campbell, C.L., Lucas, L.T.: Causes of plant diseases. In: Introduction to Plant Diseases, pp. 9–14. Springer, Boston (1992). https://doi.org/10.1007/978-1-4615-7294-7_2

  • Mugithe, P. K., Mudunuri, R. V., Rajasekar, B., Karthikeyan, S.: Image processing technique for automatic detection of plant diseases and alerting system in agricultural farms. In: 2020 International Conference on Communication and Signal Processing (ICCSP)

    Google Scholar 

  • Paszke, A., et al.: (2019). Pytorch: an imperative style, high-performance deep learning library. In: 32nd Proceedings on Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  • Paullada, A., Raji, I.D., Bender, E.M., Denton, E., Hanna, A.: Data and its (dis) contents: a survey of dataset development and use in machine learning research. Patterns 2(11), 100336 (2021)

    Article  Google Scholar 

  • Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621(2017)

  • Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  • Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: 29th Proceedings on Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  • Shirahatti, J., Patil, R., Akulwar, P.: A survey paper on plant disease identification using machine learning approach. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES) (2018)

    Google Scholar 

  • Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  • Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Processing Agric. 4(1), 41–49 (2017)

    Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  • Villani, C. (2009). Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2009) https://doi.org/10.1007/978-3-540-71050-9

  • Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network (2016). arXiv preprint arXiv:1609.03126

  • Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was done within the framework “Agrometeorological Stations Platform” project funded by the Moroccan Ministry of Higher Education and Scientific Research - National Centre for Scientific and Technical Research (NCSTR) (PPR2 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houda Orchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orchi, H., Sadik, M., Khaldoun, M. (2023). A Novel Hybrid Deep Learning Model for Crop Disease Detection Using BEGAN. In: Sabir, E., Elbiaze, H., Falcone, F., Ajib, W., Sadik, M. (eds) Ubiquitous Networking. UNet 2022. Lecture Notes in Computer Science, vol 13853. Springer, Cham. https://doi.org/10.1007/978-3-031-29419-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29419-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29418-1

  • Online ISBN: 978-3-031-29419-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics