Skip to main content

TCP-RTA: Real-time Topology Adaptive Congestion Control Strategy in TCP

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2022)

Abstract

The congestion-control mechanisms currently implemented in different variants of the Transmission Control Protocol (TCP) do not account for the possibility that an inherent topology change is the cause of changes in the perceived end-to-end round-trip time (RTT) in a TCP session, rather than network congestion. This results in low throughput and inefficient use of the available bandwidth. We introduce TCP-RTA (TCP Real-time Topology Adaptiveness), a TCP variant that dynamically detects a topology change and in real-time adapts to an appropriate congestion-control strategy in order to maximize the effective use of the total available bandwidth. Simulation results indicate a throughput increase of more than 35% in scenarios involving dynamic topology changes in the midst of a TCP session.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baiocchi, A., Castellani, A.P., Vacirca, F.: Yeah-TCP: yet another highspeed TCP. In: Proceedings of PFLDnet, vol. 7, pp. 37–42 (2007)

    Google Scholar 

  2. Bakre, A.V., Badrinath, B.: Handoff and systems support for indirect TCP/IP. In: Symposium on Mobile and Location-Independent Computing, pp. 11–24 (1995)

    Google Scholar 

  3. Bakshi, B.S., Krishna, P., Vaidya, N.H., Pradhan, D.K.: Improving performance of TCP over wireless networks. In: Proceedings of 17th International Conference on Distributed Computing Systems, pp. 365–373. IEEE (1997)

    Google Scholar 

  4. Balakrishnan, H., Seshan, S., Katz, R.H.: Improving reliable transport and handoff performance in cellular wireless networks. Wireless Netw. 1(4), 469–481 (1995)

    Article  Google Scholar 

  5. Bhandarkar, S., Sadry, N.E., Reddy, A.N., Vaidya, N.H.: TCP-DCR: a novel protocol for tolerating wireless channel errors. IEEE Trans. Mob. Comput. 4(5), 517–529 (2005)

    Article  Google Scholar 

  6. Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP vegas: new techniques for congestion detection and avoidance. In: Proceedings of the Conference on Communications Architectures, Protocols and Applications, pp. 24–35 (1994)

    Google Scholar 

  7. Caceres, R., Iftode, L.: Improving the performance of reliable transport protocols in mobile computing environments. IEEE J. Sel. Areas Commun. 13(5), 850–857 (1995)

    Article  Google Scholar 

  8. Caini, C., Firrincieli, R.: TCP HYBLA: a TCP enhancement for heterogeneous networks. Int. J. Satell. Commun. Netw. 22(5), 547–566 (2004)

    Article  Google Scholar 

  9. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. Commun. ACM 60(2), 58–66 (2017)

    Article  Google Scholar 

  10. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP Westwood: end-to-end congestion control for wired/wireless networks. Wireless Netw. 8(5), 467–479 (2002)

    Article  MATH  Google Scholar 

  11. Fall, K., Floyd, S.: Simulation-based comparisons of tahoe, reno and sack TCP. ACM SIGCOMM Comput. Commun. Rev. 26(3), 5–21 (1996)

    Article  Google Scholar 

  12. Floyd, S.: Rfc3649: Highspeed TCP for large congestion windows (2003)

    Google Scholar 

  13. Floyd, S., Henderson, T., Gurtov, A.: Rfc3782: The newreno modification to TCP’s fast recovery algorithm (2004)

    Google Scholar 

  14. Goff, T., Moronski, J., Phatak, D.S., Gupta, V.: Freeze-TCP: a true end-to-end TCP enhancement mechanism for mobile environments. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), vol. 3, pp. 1537–1545. IEEE (2000)

    Google Scholar 

  15. Group, N.I.R.T.: 5g network deployment scenarios (2022). https://anglova.net/

  16. Jin, C., et al.: Caltech FAST TCP: from theory to experiments, Low Eng. Appl.. Sci. (2005)

    Google Scholar 

  17. Ha, S., Rhee, I., Xu, L.: Cubic: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)

    Article  Google Scholar 

  18. Hatano, T., Fukuhara, M., Shigeno, H., Okada, K.I.: TCP-friendly sqrt TCP for high speed networks. In: Proceedings of APSITT (November 2003), pp. 455–460 (2003)

    Google Scholar 

  19. Jacobson, V.: Modified TCP congestion avoidance algorithm. Technical Report (1990)

    Google Scholar 

  20. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM comput. Commun. Rev. 18(4), 314–329 (1988)

    Article  Google Scholar 

  21. Jacobson, V., Braden, R., Borman, D.: TCP extensions for high performance. Tech. rep., RFc 1323, May (1992)

    Google Scholar 

  22. Kanagarathinam, M.R., Singh, S., Sandeep, I., Roy, A., Saxena, N.: D-TCP: Dynamic TCP congestion control algorithm for next generation mobile networks. In: 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2018). https://doi.org/10.1109/CCNC.2018.8319185

  23. Kelly, T.: Scalable TCP: Improving performance in highspeed wide area networks. ACM SIGCOMM Comput. Communi. Rev. 33(2), 83–91 (2003)

    Article  MathSciNet  Google Scholar 

  24. M. Mathis, J. Mahdavi, S., Romanow., A.: TCP selective acknowledgment options. RFc 2018, October (1996)

    Google Scholar 

  25. Parsa, C., Garcia-Luna-Aceves, J.J.: Improving TCP congestion control over internets with heterogeneous transmission media. In: Proceedings. Seventh International Conference on Network Protocols, pp. 213–221. IEEE (1999)

    Google Scholar 

  26. Polese, M., Chiariotti, F., Bonetto, E., Rigotto, F., Zanella, A., Zorzi, M.: A survey on recent advances in transport layer protocols. IEEE Commun .Surv. Tutor. 21(4), 3584–3608 (2019). https://doi.org/10.1109/COMST.2019.2932905

    Article  Google Scholar 

  27. Ramakrishnan, K.K., Floyd, S., Black, D.L.: The addition of explicit congestion notification (ECN) to IP. RFC 3168, pp. 1–63 (2001)

    Google Scholar 

  28. Ratnam, K., Matta, I.: WTCP: an efficient mechanism for improving TCP performance over wireless links. In: Proceedings Third IEEE Symposium on Computers and Communications. ISCC’1998. (Cat. No. 98EX166), pp. 74–78. IEEE (1998)

    Google Scholar 

  29. Sessini, P., Mahanti, A.: Observations on round-trip times of TCP connections (January 2006)

    Google Scholar 

  30. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: Proceedings-IEEE INFOCOM (2006)

    Google Scholar 

  31. Xu, K., Tian, Y., Ansari, N.: TCP-jersey for wireless IP communications. IEEE J. Sel. Areas Commun. 22(4), 747–756 (2004)

    Article  Google Scholar 

  32. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: IEEE INFOCOM 2004, vol. 4, pp. 2514–2524. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srinivasan, R., Garcia-Luna-Aceves, J.J. (2023). TCP-RTA: Real-time Topology Adaptive Congestion Control Strategy in TCP. In: Sabir, E., Elbiaze, H., Falcone, F., Ajib, W., Sadik, M. (eds) Ubiquitous Networking. UNet 2022. Lecture Notes in Computer Science, vol 13853. Springer, Cham. https://doi.org/10.1007/978-3-031-29419-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29419-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29418-1

  • Online ISBN: 978-3-031-29419-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics