Skip to main content

Fall Detection Combining Android Accelerometer and Step Counting Virtual Sensors

  • Conference paper
  • First Online:
ICT for Health, Accessibility and Wellbeing (IHAW 2022)

Abstract

INTRODUCTION: Falls constitute a significant threat to older adults. Several approaches aimed at automatically detecting falls exist. Smartphones are widespread and can serve as a low-cost pervasive platform for automated fall detection. Existing fall detection apps are highly sensitive, but often suffers from sub-optimal specificity which can result in many false positives.

OBJECTIVES: The aim of this study was to investigate whether the built-in pedometer virtual sensor on the Android smartphone platform can be used to increase specificity and thereby achieve higher accuracy in an accelerometer-based Android fall detection application.

METHODS: An existing open threshold-based accelerometer algorithm was combined with the standard Android virtual sensor pedometer algorithm for detecting walking in the postfall phase. In a range of experiments, falls were simulated using a combination of a test mannequin and test participants, in order to determine the sensitivity and specificity of the solution.

RESULTS: All simulated falls were detected with 100% sensitivity. By counting postfall subsequent steps using the Android pedometer virtual sensor, the specificity of the application was increased to 100% in all scenarios.

CONCLUSION: The combination of accelerometer and pedometer sensors was found feasible to use for increasing the specificity of existing open fall detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations, World population ageing (2015). https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf

  2. United Nations, World population prospects (2019). https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

  3. Bousquet, J., et al.: Operational definition of Active and Healthy Ageing (AHA): a conceptual framework. J. Nutr. Health Aging 19(9), 955–960 (2015). https://doi.org/10.1007/s12603-015-0589-6

    Article  Google Scholar 

  4. Tinetti, M.E., Speechley, M., Ginter, S.F.: Risk factors for falls among elderly persons living in the community. New Engl. J. Med. 319(26), 1701–1707 (1988)

    Article  Google Scholar 

  5. Hauer, K., Lamb, S.E., Jorstad, E.C., Todd, C., Becker, C.: Systematic review of definitions and methods of measuring falls in randomised controlled fall prevention trials. Age Ageing 35(1), 5–10 (2006)

    Article  Google Scholar 

  6. World Health Organization, Falls (2018). https://www.who.int/news-room/fact-sheets/detail/falls

  7. Zecevic, A.A., Salmoni, A.W., Speechley, M., Vandervoort, A.A.: Defining a fall and reasons for falling: comparisons among the views of seniors, health care providers, and the research literature. Gerontologist 46, 367–376 (2006)

    Article  Google Scholar 

  8. Rubenstein, L.Z., Josephson, K.R.: The epidemiology of falls and syncope. Clin. Geriatr. Med. 18(2), 141–158 (2002)

    Article  Google Scholar 

  9. Nevitt, M.C., Cummings, S.R., Kidd, S., Black, D.: Risk factors for recurrent nonsyncopal falls: a prospective study. JAMA 261(18), 2663–2668 (1989)

    Article  Google Scholar 

  10. Karlsson, M.K., Magnusson, H., von Schewelov, T., Rosengren, B.E.: Prevention of falls in the elderly-a review. Osteoporos. Int. 24(3), 747–762 (2013). https://doi.org/10.1007/s00198-012-2256-7

    Article  Google Scholar 

  11. Bergland, A., Wyller, T.B.: Risk factors for serious fall related injury in elderly women living at home. Inj. Prev. 10(5), 308–313 (2004)

    Article  Google Scholar 

  12. Wild, D., Nayak, U.S.L., Isaacs, B.: How dangerous are falls in old people at home? (1981). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1504022/

  13. Fleming, J., Brayne, C.: Inability to get up after falling, subsequent time on floor, and summoning help: prospective cohort study in people over 90. 337. https://doi.org/10.1136/bmj.a2227. https://www.bmj.com/content/337/bmj.a2227, https://www.bmj.com/content/337/bmj.a2227.full.pdf

  14. Bisson, E.J., Peterson, E.W., Finlayson, M.: Delayed initial recovery and long lie after a fall among middle-aged and older people with multiple sclerosis. Arch. Phys. Med. Rehabil. 96(8), 1499–1505 (2015)

    Article  Google Scholar 

  15. Lord, S., Sherrington, C., Menz, H., Close, J.: Falls in Older People: Risk Factors and Strategies for Prevention. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  16. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. 12, 66 (2013). https://doi.org/10.1186/1475-925X-12-66

    Article  Google Scholar 

  17. Noury, N., Rumeau, P., Bourke, A., ÓLaighin, G., Lundy, J.: A proposal for the classification and evaluation of fall detectors. IRBM 29(6), 340–349 (2008)

    Article  Google Scholar 

  18. Tsinganos, P., Skodras, A.: On the comparison of wearable sensor data fusion to a single sensor machine learning technique in fall detection. Sensors 18(2), 592 (2018)

    Article  Google Scholar 

  19. Yu, X.: Approaches and principles of fall detection for elderly and patient. In: HealthCom 10th International Conference on e-health Networking, Applications and Services, IEEE (2008). https://ieeexplore.ieee.org/abstract/document/4600107

  20. de Miguel, K., Brunete, A., Hernando, M., Gambao, E.: Home camera-based fall detection system for the elderly. Sensors 17, 2864 (2017)

    Article  Google Scholar 

  21. Kenton, W.: Wearable technology (2019). https://www.investopedia.com/terms/w/wearable-technology.asp

  22. Lee, J.: How sensor fusion works (2016). https://www.allaboutcircuits.com/technical-articles/how-sensor-fusion-works/

  23. Lindemann, U., Hock, A., Stuber, M., Keck, W., Becker, C.: Evaluation of a fall detector based on accelerometers: a pilot study. Med. Biol. Eng. Compu. 43(5), 548–551 (2005)

    Article  Google Scholar 

  24. Bourke, A., O’brien, J., Lyons, G.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 26(2), 194–199 (2007)

    Article  Google Scholar 

  25. Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J., Zhou, G.: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. In: 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 138–143. IEEE (2009)

    Google Scholar 

  26. Kerdegari, H., Samsudin, K., Ramli, A.R., Mokaram, S.: Evaluation of fall detection classification approaches. In: 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), vol. 1, pp. 131–136. IEEE (2012)

    Google Scholar 

  27. Özdemir, A.T.: An analysis on sensor locations of the human body for wearable fall detection devices: Principles and practice. Sensors 16(8), 1161 (2016)

    Article  Google Scholar 

  28. Ntanasis, P., Pippa, E., Özdemir, A.T., Barshan, B., Megalooikonomou, V.: Investigation of sensor placement for accurate fall detection. In: Perego, P., Andreoni, G., Rizzo, G. (eds.) MobiHealth 2016. LNICST, vol. 192, pp. 225–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58877-3_30

    Chapter  Google Scholar 

  29. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2), 285–291 (2008)

    Article  Google Scholar 

  30. Casilari, E., Luque, R., Morón, M.J.: Analysis of android device-based solutions for fall detection. Sensors 15, 17827–17894 (2015)

    Article  Google Scholar 

  31. Danmarks Statistik, It-anvendelse i befolkningen (tema) (2018). https://www.dst.dk/Site/Dst/Udgivelser/nyt/GetPdf.aspx?cid=31437

  32. Chen, K., Chan, A., Tsang, S.: Usage of mobile phones amongst elderly people in Hong Kong. In: Lecture Notes in Engineering and Computer Science vol. 2, pp. 1016–1019 (2013)

    Google Scholar 

  33. Plaza, I., MartíN, L., Martin, S., Medrano, C.: Mobile applications in an aging society: status and trends. J. Syst. Softw. 84(11), 1977–1988 (2011)

    Article  Google Scholar 

  34. Luque, R., Casilari, E., Morón, M.J., Redondo, G.: Comparison and characterization of android-based fall detection systems. Sensors 14(10), 18543–18574 (2014)

    Article  Google Scholar 

  35. Zhuang, Y., Baldwin, J., Antunna, L., Yazir, Y.O., Ganti, S., Coady, Y.: Tradeoffs in cross platform solutions for mobile assistive technology. In: 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 330–335. IEEE (2013)

    Google Scholar 

  36. Dai, J., Bai, X., Yang, Z., Shen, Z., Xuan, D.: Mobile phone-based pervasive fall detection. Pers. Ubiquit. Comput. 14(7), 633–643 (2010). https://doi.org/10.1007/s00779-010-0292-x

    Article  Google Scholar 

  37. He, Y., Li, Y., Bao, S.D.: Fall detection by built-in tri-accelerometer of smartphone. In: IEEE-EMBS International Conference on Biomedical and Health Informatics, vol. 2012 (2012). https://doi.org/10.1109/BHI.2012.6211540

  38. Tran, H.A., Ngo, Q.T., Tong, V.: A new fall detection system on android smartphone: application to a SDN-based IoT system. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–6 (2017)

    Google Scholar 

  39. Alwan, M., et al.: A smart and passive floor-vibration based fall detector for elderly. In: 2006 2nd International Conference on Information and Communication Technologies, vol. 1, pp. 1003–1007. IEEE (2006)

    Google Scholar 

  40. Klenk, J., et al.: Development of a standard fall data format for signals from body-worn sensors: the farseeing consensus. Z. Gerontol. Geriatr. 46(8), 720 (2013)

    Article  Google Scholar 

  41. Kangas, M., Vikman, I., Nyberg, L., Korpelainen, R., Lindblom, J., Jämsä, T.: Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects. Gait Posture 35(3), 500–505 (2012)

    Article  Google Scholar 

  42. Jin, L., Hahn, M.E.: Comparison of lower extremity joint mechanics between healthy active young and middle age people in walking and running gait. Sci. Rep. 9(1), 5568 (2019). https://doi.org/10.1038/s41598-019-41750-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rahr Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Honoré, J.T., Rask, R.D., Wagner, S.R. (2023). Fall Detection Combining Android Accelerometer and Step Counting Virtual Sensors. In: Papadopoulos, G.A., Achilleos, A., Pissaloux, E., Velázquez, R. (eds) ICT for Health, Accessibility and Wellbeing. IHAW 2022. Communications in Computer and Information Science, vol 1799. Springer, Cham. https://doi.org/10.1007/978-3-031-29548-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29548-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29547-8

  • Online ISBN: 978-3-031-29548-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics