Abstract
The integration of process orientation and the use of analytical applications to provide process-related analytical information in operational process activities (e.g., Operational BI) has become increasingly widespread. But at the same time, the insufficient involvement of analytical end users with their process context and the resulting unclear requirements/expected analytical software functions are still one of the main reasons for analytical project failure. This paper is based on a previous conference publication [26] and extends the detailed presentation of failure causes as well as shows the shortcomings of existing approaches, tools and models (1. BPMN process model extensions, 2. Configurators in analytical applications, 3. Models used in analytical development projects) for the documentation/conceptual configuration of analytical requirements. In addition, this paper presents the evaluation results of a process-oriented and service-based configuration approach for analytical applications, whose practicability, usefulness and acceptance were evaluated in expert reviews and were tested in a Population Forecast scenario.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AEP AG: Warum scheitern viele BI-Projekte? (2020). https://www.aep-ag.com/2-uncategorised/211-warum-scheitern-viele-bi-projekte
Alpar, P., Alt, R., Bensberg, F., Weimann, P.: Anwendungsorientierte Wirtschaftsinformatik. Strategische Planung, Entwicklung und Nutzung von Informationssystemen. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25581-7
Alpar, P., Schulz, M.: Self-Service Business Intelligence. Bus. Inf. Syst. Eng. 58(2), 151–155 (2016). https://doi.org/10.1007/s12599-016-0424-6
Begerow, M.: Ziele von Business Intelligence (2020). https://datenbanken-verstehen.de/business-intelligence/business-intelligence-grundlagen/business-intelligence-ziele/
Besemer, D.: Getting started now on SOA for BI. DM Rev. 17(5), 26–37 (2007)
Betke, H., Seifert, M.: BPMN for disaster response processes. In: Eibl, M., Gaedke, M. (eds.) INFORMATIK 2017, pp. 1311–1324. Gesellschaft für Informatik, Bonn (2017). https://doi.org/10.18420/in2017_132
Beverungen, D., et al.: Seven paradoxes of business process management in a hyper-connected world. Bus. Inf. Syst. Eng. 63(2), 145–156 (2020). https://doi.org/10.1007/s12599-020-00646-z
Blecker, T., Dullnig, H., Malle, F.: Kundenkohärente und kundeninhärente Produktkonfiguration in der Mass Customization. Ind. Manage. 19(1), 21–24 (2003)
Bocciarelli, P., D'Ambrogio, A., Paglia, E., Giglio, A.: An HLA-based BPMN extension for the specification of business process collaborations. In: 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp. 1–8. IEEE (2017). https://doi.org/10.1109/DISTRA.2017.8167668
Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S., Di Milano, P.: Designing data marts for data warehouses. ACM Trans. Software Eng. Methodol. 10, 452–483 (2001). https://doi.org/10.1145/384189.384190
Calvanese, D., Dragone, L., Nardi, D., Rosati, R., Trisolini, S.M.: Enterprise modeling and data warehousing in Telecom Italia. Inf. Syst. 31(1), 1–32 (2006). https://doi.org/10.1016/j.is.2004.07.002
Colangelo, E., Bauernhansl, T.: Usage of analytical services in industry today and tomorrow. Procedia CIRP 57, 276–280 (2016). https://doi.org/10.1016/j.procir.2016.11.048
D'Ambrogio, A., Paglia, E., Bocciarelli, P., Giglio, A.: Towards performance-oriented perfective evolution of BPMN models. In: 2016 Symposium on Theory of Modeling and Simulation (TMS-DEVS), pp. 1–8. IEEE (2016). https://doi.org/10.22360/SpringSim.2016.TMSDEVS.032
Davis, G.B.: Advising and Supervising. In: Avison, D.E., Pries-Heje, J. (eds.) Research in information systems. A handbook for research supervisors and their students. Butterworth-Heinemann information systems series, pp. 1–33. Elsevier Butterworth-Heinemann, Amsterdam (2005)
Ferrández, A., Maté, A., Peral, J., Trujillo, J., De Gregorio, E., Aufaure, M.-A.: A framework for enriching Data Warehouse analysis with Question Answering systems. J. Intell. Inf. Syst. 46(1), 61–82 (2014). https://doi.org/10.1007/s10844-014-0351-2
Fleming, O., Fountaine, T., Henke, N., Saleh, T.: Ten red flags signaling your analytics program will fail (2018). https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/ten-red-flags-signaling-your-analytics-program-will-fail
Frank, U.: Domain-specific modeling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain engineering. Product Lines, Languages, and Conceptual Models, pp. 133–157. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36654-3_6
Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to requirement analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008). https://doi.org/10.1016/j.dss.2006.12.001
Goeken, M.: Anforderungsmanagement bei der Entwicklung von Data Warehouse-Systemen. In: Schelp, J., Winter, R. (eds.) Auf dem Weg zur Integration Factory - Proceedings der DW2004, pp. 167–186. Physica, Heidelberg (2004). https://doi.org/10.1007/3-7908-1612-4_9
Graupner, E., Berner, M., Mädche, A., Jegadeesan, H.: Business intelligence & analytics for processes - a visibility requirements evaluation. In: Kundisch, D., Suhl, L., Beckmann, L. (eds.) MKWI 2014 - Multikonferenz Wirtschaftsinformatik, pp. 154–166. Universität Paderborn, Paderborn (2014)
Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MISQ 37(2), 337–355 (2013). https://doi.org/10.25300/MISQ/2013/37.2.01
Hänel, T., Felden, C.: Operational Business Intelligence im Zukunftsszenario der Industrie 4.0. In: Gluchowski, P., Chamoni, P. (eds.) Analytische Informationssysteme, pp. 259–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47763-2_13
Hoffjan, A., Rohe, M.: Konzeptionelle Analyse von Self-Service Business Intelligence und deren Gestaltungsmöglichkeiten. In: Kißler, M., Wiesehahn, A. (eds.) Erfolgreiches Controlling, pp. 99–112. Nomos Verlagsgesellschaft mbH & Co. KG, Baden-Baden (2018). https://doi.org/10.5771/9783845288741-99
Horkoff, J., et al.: Strategic business modeling: representation and reasoning. Softw. Syst. Model. 13(3), 1015–1041 (2012). https://doi.org/10.1007/s10270-012-0290-8
Hrach, C., Alt, R.: Configuration approach for analytical service models – development and evaluation. In: 2020 IEEE 22nd Conference on Business Informatics (CBI), pp. 260–269. IEEE (2020). https://doi.org/10.1109/CBI49978.2020.00035
Hrach, C., Alt, R., Sackmann, S.: Process-oriented documentation of user requirements for analytical applications - challenges, state of the art and evaluation of a service-based configuration approach. In: Ganzha, M., Maciaszek, L., Paprzycki, M., Ślęzak, D. (eds.) Proceedings of the 17th Conference on Computer Science and Intelligent Systems (ACSIS), vol. 30, pp. 773–782 (2022). https://doi.org/10.15439/2022F181
Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Mayorova, D.: A requirement-driven approach to the design and evolution of data warehouses. Inf. Syst. 44, 94–119 (2014). https://doi.org/10.1016/j.is.2014.01.004
Liskin, O.: How artifacts support and impede requirements communication. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 132–147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16101-3_9
Magnani, M., Montesi, D.: BPDMN: A Conservative Extension of BPMN with Enhanced Data Representation Capabilities (2009). https://doi.org/10.48550/arXiv.0907.1978
Martin, W.: Analytics meets Enterprise SOA. S.A.R.L. Martin (2006)
Maté, A., Trujillo, J.: A trace metamodel proposal based on the model driven architecture framework for the traceability of user requirements in data warehouses. Inf. Syst. 37(8), 753–766 (2012). https://doi.org/10.1016/j.is.2012.05.003
Mayer, J.H., Winter, R., Mohr, T.: Situational Management Support Systems. Bus Inf Syst Eng 4(6), 331–345 (2012). https://doi.org/10.1007/s12599-012-0233-5
Meister, D.: Woran scheitern Data Science Projekte? Datahouse AG (2019)
Meth, H., Mueller, B., Maedche, A.: Designing a requirement mining system. J. Assoc. Inf. Syst. 16(9), 799–837 (2015). https://doi.org/10.17705/1jais.00408
Misra, J., Sengupta, S., Podder, S.: Topic cohesion preserving requirements clustering. In: Minku, L., Miransky, A., Turhan, B. (eds.) Proceedings of the 5th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering - RAISE ‘16, pp. 22–28. ACM Press, New York (2016). https://doi.org/10.1145/2896995.2896998
Neumann, G., Human, S., Alt, R.: Introduction to the minitrack on end-user empowerment in the digital age. In: Proceedings 53. Hawaii International Conference on System Sciences, pp. 4099–4101 (2020). https://doi.org/10.24251/HICSS.2020.501
O’Shea, M., Pawellek, G., Schramm, A.: Durch maßgeschneiderte Informationsversorgung zu mehr Usability. Wirtschaftsinformatik & Management 5(6), 104–114 (2013). https://doi.org/10.1365/s35764-013-0370-8
Panian, Z.: How to Make business intelligence actionable through service-oriented architectures. In: 2nd WSEAS International Conference on Computer Engineering and Applications, pp. 210–221 (2008)
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302
Pohl, K., Rupp, C.: Requirements engineering fundamentals. A study guide for the certified professional for requirements engineering exam, foundation level - REB compliant. Rocky Nook, Santa Barbara (2015)
Prisma Informatik GmbH: Die sechs häufigsten Fehler in Business Intelligence Projekten (2020). https://www.prisma-informatik.de/erp-blog/2016/06/die-sechs-haeufigsten-fehler-in-business-intelligence-projekten/
Richardson, J., Schlegel, K., Sallam, R., Kronz, A., Sun, J.: Magic Quadrant for Analytics and Business Intelligence Platforms 2021. Gartner Inc. (2021)
Ritter, J.: Prozessorientierte Konfiguration komponentenbasierter Anwendungssysteme. Dissertation, Universität Oldenburg (2000)
Rosenkranz, C., Holten, R., Räkers, M., Behrmann, W.: Supporting the design of data integration requirements during the development of data warehouses: a communication theory-based approach. Eur. J. Inf. Syst. 26(1), 84–115 (2017). https://doi.org/10.1057/ejis.2015.22
Rupp, C.: Requirements-Engineering und -Management. Das Handbuch für Anforderungen in jeder Situation. Hanser, München (2021). https://doi.org/10.3139/9783446464308
Sachse, S.: Customer-centric Service Management - Conceptualization and Evaluation of Consumer-induced Service Composition. Dissertation, Universität Leipzig (2018)
Sarma, A.D.N.: A generic functional architecture for operational BI system. Int. J. Bus. Intell. Res. 9(1), 64–77 (2018). https://doi.org/10.4018/IJBIR.2018010105
Schiefer, J., Seufert, A.: Towards a service-oriented architecture for operational BI. In: Schumann, M., Kolbe, L.M., Breitner, M.H., Frerichs, A. (eds.) Multikonferenz Wirtschaftsinformatik 2010, pp. 1137–1149. Universitätsverlag Göttingen, Göttingen (2010). https://doi.org/10.17875/gup2010-1573
Schönig, S., Jablonski, S., Ermer, A.: IoT-basiertes Prozessmanagement. Informatik Spektrum 42(2), 130–137 (2019). https://doi.org/10.1007/s00287-019-01140-x
Schulze, K.D., Dittmar, C.: Business Intelligence Reifegradmodelle. In: Chamoni, P., Gluchowski, P. (eds.) Analytische Informationssysteme: Business Intelligence-Technologien und -Anwendungen, pp. 72–87. Springer Verlag, Berlin (2006). https://doi.org/10.1007/3-540-33752-0_4
Shanks, G., Darke, P.: Understanding corporate data models. Inf. Manage. 35(1), 19–30 (1999). https://doi.org/10.1016/S0378-7206(98)00078-0
Sharma, S., Chen, K., Sheth, A.: Towards practical privacy-preserving analytics for IoT and cloud-based healthcare systems. IEEE Internet Comput. 22(2), 42–51 (2018). https://doi.org/10.1109/MIC.2018.112102519
Strauch, B.: Entwicklung einer Methode für die Informationsbedarfsanalyse im Data Warehousing. Dissertation, Universität St. Gallen (2002)
Teruel, M.A., Maté, A., Navarro, E., González, P., Trujillo, J.C.: The new era of business intelligence applications: building from a collaborative point of view. Bus. Inf. Syst. Eng. 61(5), 615–634 (2019). https://doi.org/10.1007/s12599-019-00578-3
Uria-Recio, P.: Top 25 Mistakes Corporates Make in their Advanced Analytics Programs (2018). https://towardsdatascience.com/top-25-mistakes-corporates-make-in-their-advanced-analytics-programs-c51e76218e20
Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics Inform. 33(3), 793–807 (2016). https://doi.org/10.1016/j.tele.2015.12.005
Wu, L., Barash, G., Bartolini, C.: A Service-oriented architecture for business intelligence. In: IEEE International Conference on Service-Oriented Computing and Applications (SOCA 2007), pp. 279–285 (2007). https://doi.org/10.1109/SOCA.2007.6
Zarour, K., Benmerzoug, D., Guermouche, N., Drira, K.: A systematic literature review on BPMN extensions. BPMJ 26(6), 1473–1503 (2019). https://doi.org/10.1108/BPMJ-01-2019-0040
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hrach, C., Alt, R., Sackmann, S. (2023). Configuration Approach of User Requirements for Analytical Applications - Challenges, State of the Art and Evaluation. In: Ziemba, E., Chmielarz, W., Wątróbski, J. (eds) Information Technology for Management: Approaches to Improving Business and Society. FedCSIS-AIST ISM 2022 2022. Lecture Notes in Business Information Processing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-29570-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-29570-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29569-0
Online ISBN: 978-3-031-29570-6
eBook Packages: Computer ScienceComputer Science (R0)