Skip to main content

A Sustainable Approach for Determining Compromise Ranking Based on Intuitonistic Fuzzy Score Functions

  • Conference paper
  • First Online:
Information Technology for Management: Approaches to Improving Business and Society (FedCSIS-AIST 2022, ISM 2022)

Abstract

Many real-world decision-making problems require some degree of uncertainty to be taken into account. For purpose of representing such problems, intuitionistic fuzzy sets are used, however, most well-known multi-criteria decision-making methods operate in a crisp environment. In this paper, we present an assessment of score functions that are used to convert fuzzy numbers into crisp ones. Five score functions were selected to assess their usefulness and effectiveness. Those functions were used to transform the theoretical fuzzy decision matrix problems into a crisp environment for evaluating alternatives using the Measurement Alternatives and Ranking according to COmpromise Solution (MARCOS) method. In addition, the compromise between score functions is presented and compared with the other results. The research showed that score functions are useful tools when dealing with problems in an uncertain environment and might prove helpful for decision-makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C., Philip, S.Y.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2008). https://doi.org/10.1109/TKDE.2008.190

    Article  Google Scholar 

  2. Al-Humairi, S., et al.: Towards sustainable transportation: a pavement strategy selection based on the extension of dual-hesitant fuzzy multi-criteria decision-making methods. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3168050

    Article  Google Scholar 

  3. Ali, M.I., Feng, F., Mahmood, T., Mahmood, I., Faizan, H.: A graphical method for ranking atanassov’s intuitionistic fuzzy values using the uncertainty index and entropy. Int. J. Intell. Syst. 34(10), 2692–2712 (2019). https://doi.org/10.1002/int.22174

    Article  Google Scholar 

  4. Büyüközkan, G., Göçer, F.: Application of a new combined intuitionistic fuzzy mcdm approach based on axiomatic design methodology for the supplier selection problem. Appl. Soft Comput. 52, 1222–1238 (2017). https://doi.org/10.1016/j.asoc.2016.08.051

    Article  Google Scholar 

  5. Chen, S.M., Deng, H.L.: Multiattribute decision making based on nonlinear programming methodology and novel score function of interval-valued intuitionistic fuzzy values. Inf. Sci. 607, 1348–1371 (2022). https://doi.org/10.1016/j.ins.2022.06.004

    Article  Google Scholar 

  6. Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 67(2), 163–172 (1994). https://doi.org/10.1016/0165-0114(94)90084-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, T.Y.: A comparative analysis of score functions for multiple criteria decision making in intuitionistic fuzzy settings. Inf. Sci. 181(17), 3652–3676 (2011). https://doi.org/10.1016/j.ins.2011.04.030

    Article  Google Scholar 

  8. Chen, Y.: An approach to evaluating the quality of public physical education class in universal institutions of higher learning with intuitionistic fuzzy information. International Information Institute (Tokyo). Information 15(10), 3917 (2012)

    Google Scholar 

  9. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001). https://doi.org/10.1016/S0165-0114(98)00235-8

    Article  MATH  Google Scholar 

  10. Dubois, D., Prade, H.: Membership functions. In: Lesot, M.-J., Marsala, C. (eds.) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. SFSC, vol. 394, pp. 5–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54341-9_2

    Chapter  Google Scholar 

  11. Ejegwa, P., Akowe, S., Otene, P., Ikyule, J.: An overview on intuitionistic fuzzy sets. Int. J. Sci. Technol. Res. 3(3), 142–145 (2014)

    Google Scholar 

  12. Feng, F., Fujita, H., Ali, M.I., Yager, R.R., Liu, X.: Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods. IEEE Trans. Fuzzy Syst. 27(3), 474–488 (2018)

    Article  Google Scholar 

  13. Garg, H.: A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Appl. Soft Comput. 38, 988–999 (2016). https://doi.org/10.1016/j.asoc.2015.10.040

    Article  Google Scholar 

  14. Garg, H.: A new generalized pythagorean fuzzy information aggregation using einstein operations and its application to decision making. Int. J. Intell. Syst. 31(9), 886–920 (2016). https://doi.org/10.1002/int.21809

    Article  Google Scholar 

  15. Kharal, A.: Homeopathic drug selection using intuitionistic fuzzy sets. Homeopathy 98(1), 35–39 (2009). https://doi.org/10.1016/j.homp.2008.10.003

    Article  Google Scholar 

  16. Li, D.F.: Multiattribute decision making method based on generalized owa operators with intuitionistic fuzzy sets. Expert Syst. Appl. 37(12), 8673–8678 (2010). https://doi.org/10.1016/j.eswa.2010.06.062

    Article  Google Scholar 

  17. Lin, J., Meng, F., Chen, R., Zhang, Q.: Preference attitude-based method for ranking intuitionistic fuzzy numbers and its application in renewable energy selection. Complexity 2018 (2018). https://doi.org/10.1155/2018/6251384

  18. Memari, A., Dargi, A., Jokar, M.R.A., Ahmad, R., Rahim, A.R.A.: Sustainable supplier selection: a multi-criteria intuitionistic fuzzy topsis method. J. Manuf. Syst. 50, 9–24 (2019). https://doi.org/10.1016/j.jmsy.2018.11.002

    Article  Google Scholar 

  19. Nguyen, H.: A generalized p-norm knowledge-based score function for an interval-valued intuitionistic fuzzy set in decision making. IEEE Trans. Fuzzy Syst. 28(3), 409–423 (2019). https://doi.org/10.1109/TFUZZ.2018.2860967

    Article  Google Scholar 

  20. Park, J.H., Cho, H.J., Kwun, Y.C.: Extension of the vikor method to dynamic intuitionistic fuzzy multiple attribute decision making. Comput. Math. Appl. 65(4), 731–744 (2013). https://doi.org/10.1016/j.camwa.2012.12.008

    Article  MathSciNet  MATH  Google Scholar 

  21. Park, J.H., Park, I.Y., Kwun, Y.C., Tan, X.: Extension of the topsis method for decision making problems under interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 35(5), 2544–2556 (2011). https://doi.org/10.1016/j.apm.2010.11.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Senapati, T., Yager, R.R.: Fermatean fuzzy sets. J. Ambient. Intell. Humaniz. Comput. 11(2), 663–674 (2019). https://doi.org/10.1007/s12652-019-01377-0

    Article  MATH  Google Scholar 

  23. Stević, Ž, Pamučar, D., Puška, A., Chatterjee, P.: Sustainable supplier selection in healthcare industries using a new mcdm method: Measurement of alternatives and ranking according to compromise solution (marcos). Comput. Ind. Eng. 140, 106231 (2020). https://doi.org/10.1016/j.cie.2019.106231

    Article  Google Scholar 

  24. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010). https://doi.org/10.1002/int.20418

    Article  MATH  Google Scholar 

  25. Tripathi, D.K., Nigam, S.K., Rani, P., Shah, A.R.: New intuitionistic fuzzy parametric divergence measures and score function-based cocoso method for decision-making problems. Decision Making: Applications in Management and Engineering (2022). https://doi.org/10.31181/dmame0318102022t

  26. Wu, J., Chiclana, F.: A risk attitudinal ranking method for interval-valued intuitionistic fuzzy numbers based on novel attitudinal expected score and accuracy functions. Appl. Soft Comput. 22, 272–286 (2014)

    Article  Google Scholar 

  27. Wu, L., Gao, H., Wei, C.: Vikor method for financing risk assessment of rural tourism projects under interval-valued intuitionistic fuzzy environment. Journal of Intelligent & Fuzzy Systems 37(2), 2001–2008 (2019). https://doi.org/10.1016/j.asoc.2014.05.005

    Article  Google Scholar 

  28. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007). https://doi.org/10.1109/TFUZZ.2006.890678

    Article  Google Scholar 

  29. Xu, Z.: A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decis. Negot. 19(1), 57–76 (2010). https://doi.org/10.1007/s10726-009-9164-z

    Article  Google Scholar 

  30. Zeng, S., Chen, S.M., Kuo, L.W.: Multiattribute decision making based on novel score function of intuitionistic fuzzy values and modified vikor method. Inf. Sci. 488, 76–92 (2019). https://doi.org/10.1016/j.ins.2019.03.018

    Article  Google Scholar 

  31. Zeng, S., Xiao, Y.: Topsis method for intuitionistic fuzzy multiple-criteria decision making and its application to investment selection. Kybernetes (2016). https://doi.org/10.1108/K-04-2015-0093

    Article  MathSciNet  Google Scholar 

  32. Zhang, C., Chen, C., Streimikiene, D., Balezentis, T.: Intuitionistic fuzzy multimoora approach for multi-criteria assessment of the energy storage technologies. Appl. Soft Comput. 79, 410–423 (2019). https://doi.org/10.1016/j.asoc.2019.04.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Sałabun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paradowski, B., Kizielewicz, B., Więckowski, J., Sałabun, W. (2023). A Sustainable Approach for Determining Compromise Ranking Based on Intuitonistic Fuzzy Score Functions. In: Ziemba, E., Chmielarz, W., Wątróbski, J. (eds) Information Technology for Management: Approaches to Improving Business and Society. FedCSIS-AIST ISM 2022 2022. Lecture Notes in Business Information Processing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-29570-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29570-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29569-0

  • Online ISBN: 978-3-031-29570-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics