Abstract
This paper presents some developments related to a project aiming to develop an AI-based model which can determine the possible ovulation dates as well as possibility of some health risks based on the input of a woman for a finite number of menstrual cycles. In some earlier papers, the AI schemes for some health risks, such as PMS, LPD, are already discussed. In this paper, additionally the schemes for hypothyroidism and polycystic ovary syndrome (PCOS) are presented. The model is based on a ontology of medical concepts, mathematical formulations of which are designed based on the data obtained from different users over a finite number of menstrual cycles and usual relationships among different parameters determining such concepts. The mathematical formulations of the concerned medical concepts are developed by using some notions of fuzzy linguistic labels and comparators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
In this condition the ovaries produce an abnormal amount of androgens, that are usually present in women in small amounts [9].
- 6.
Hypothyroidism means the thyroid gland does not produce enough thyroid hormones, which can lead to changes in the menstrual cycle. (https://helloclue.com/articles/cycle-a-z/hypothyroidism-and-the-menstrual-cycle).
- 7.
References
Bablok, L., Dziadecki, W., Szymusik, I., et al.: Patterns of infertility in Poland - multicenter study. Neuro Endocrinol Lett. 32(6), 799–804 (2011)
Dutta, S., Wasilewski, P.: Dialogue in Hierarchical Concept Learning using Prototypes and Counterexamples. Fundamenta Informaticae 162, 17–36 (2018). https://doi.org/10.3233/FI-2018-1711
Dutta, S., Skowron, A.: Concepts Approximation Through Dialogue with User. In: Mihálydeák, T., et al. (eds.) IJCRS 2019. LNCS (LNAI), vol. 11499, pp. 295–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22815-6_23
Dutta, S., Skowron, A.: Toward a computing model dealing with complex phenomena: interactive granular computing. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 199–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_15
Fedorowicz, J., et al.: Multivariate Ovulation Window Detection at OvuFriend. In: Mihálydeák, T., et al. (eds.) IJCRS 2019. LNCS (LNAI), vol. 11499, pp. 395–408. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22815-6_31
Fernandez-Llatas, C., Munoz-Gama, J., Martin, N., Johnson, O., Sepulveda, M., Helm, E.: Process mining in healthcare. In: Fernandez-Llatas, C. (ed.) Interactive Process Mining in Healthcare. HI, pp. 41–52. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53993-1_4
Ginsburg, K.A.: Luteal phase defect: etiology, diagnosis, and management. Endocrinol. Metabolism Clin. North Am. 21(1), 85–104 (1992). Reproductive Endocrinology. https://doi.org/10.1016/S0889-8529(18)30233-0
Good, P.: Resampling methods: a practical guide to data analysis. Birkhäuser Boston (2005)
Goodman, N.F., Cobin, R.H., Futterweit, W., Glueck, J.S., Legro, R.S., Carmina, E.: American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome - Part 1. Endocr. Pract. 21(11), 1291–1300 (2015). https://doi.org/10.4158/EP15748.DSC
Hamburg, M.A., Collins, F.S.: The Path to Personalized Medicine. New England J. Med. 363(4), 301–304 (2010). https://doi.org/10.1056/NEJMp1006304
Haynes, B., Haines, A.: Barriers and bridges to evidence based clinical practice. BMJ 317(7153), 273–276 (1998). https://doi.org/10.1136/bmj.317.7153.273
Jankowski, A., Skowron, A., Swiniarski, R.W.: Interactive complex granules. Fundam. Informaticae 133(2–3), 181–196 (2014). https://doi.org/10.3233/FI-2014-1070
Kacprzyk, J., Owsinski, J.W., Szmidt, E., Zadrozny, S.: Fuzzy linguistic summaries for human centric analyses of sustainable development goals (sdg) related to technological innovations. In: Verdegay, J.L., Brito, J., Cruz, C. (eds.) Computational Intelligence Methodologies Applied to Sustainable Development Goals, Studies in Computational Intelligence, vol. 1036, pp. 19–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97344-5_2
Kacprzyk, J., Yager, R.R., Merigó, J.M.: Towards human-centric aggregation via ordered weighted aggregation operators and linguistic data summaries: a new perspective on zadeh’s inspirations. IEEE Comput. Intell. Mag. 14(1), 16–30 (2019). https://doi.org/10.1109/MCI.2018.2881641
Kacprzyk, J., Zadrozny, S.: Fuzzy logic-based linguistic summaries of time series: a powerful tool for discovering knowledge on time varying processes and systems under imprecision. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 6(1), 37–46 (2016). https://doi.org/10.1002/widm.1175
Kalhor, M., Yuseflo, S., Kaveii, B., Mohammadi, F., Javadi, H.: Effect of yarrow (Achillea Millefolium L.) extract on premenstrual syndrome in female students living in dormitory of Qazvin university of medical sciences. J. Medicinal Plants 18(72), 52–63 (2019). https://doi.org/10.29252/jmp.4.72.S12.52
Smoley, B., Robinson, C.: Natural family planning. Am. Fam. Physician 86(10), 924–928 (2012)
Sosnowski, L., Penza, T.: Generating fuzzy linguistic summaries for menstrual cycles. Annal. Comput. Sci. Inf. Syst. 21, 119–128 (2020). https://doi.org/10.15439/2020F202
Sosnowski, Ł, Szymusik, I., Penza, T.: Network of fuzzy comparators for ovulation window prediction. In: Lesot, M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1239, pp. 800–813. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50153-2_59
Sosnowski, L., Wróblewski, J.: Toward automatic assessment of a risk of women’s health disorders based on ontology decision models and menstrual cycle analysis. In: Chen, Y., et al. (eds.) 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021, pp. 5544–5552. IEEE (2021). https://doi.org/10.1109/BigData52589.2021.9671481
Sosnowski, L., Zulawinska, J., Dutta, S., Szymusik, I., Zygula, A., Bambul-Mazurek, E.: Artificial intelligence in personalized healthcare analysis for womens’ menstrual health disorders. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M., Slezak, D. (eds.) Proceedings of the 17th Conference on Computer Science and Intelligence Systems, FedCSIS 2022, Sofia, Bulgaria, 4–7 September 2022. Annal. Comput. Sci. Inf. Syst. 30, 751–760 (2022). https://doi.org/10.15439/2022F59
Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., He, L.: A survey of human-in-the-loop for machine learning. Future Gener. Comput. Syst. 135, 364–381 (2022). https://doi.org/10.1016/j.future.2022.05.014
Acknowledgement
The research presented in this paper is co-financed by the EU Smart Growth Operational Program 2014-2020 under the project “Developing innovative solutions in the domain of detection of frequent intimate and hormonal health disorders in women of procreative age based on artificial intelligence and machine learning - OvuFriend 2.0”, POIR.01.01.01-00-0826/20.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sosnowski, Ł., Dutta, S., Szymusik, I. (2023). Analysis for Women’s’ Menstrual Health Disorders Using Artificial Intelligence. In: Ziemba, E., Chmielarz, W., Wątróbski, J. (eds) Information Technology for Management: Approaches to Improving Business and Society. FedCSIS-AIST ISM 2022 2022. Lecture Notes in Business Information Processing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-29570-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-29570-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29569-0
Online ISBN: 978-3-031-29570-6
eBook Packages: Computer ScienceComputer Science (R0)