Skip to main content

Symptoms of Dementia in Elderly Persons Using Waveform Features of Pupil Light Reflex

  • Conference paper
  • First Online:
Information Technology for Management: Approaches to Improving Business and Society (FedCSIS-AIST 2022, ISM 2022)

Abstract

A procedure for detecting cognitive impairment in senior citizens is examined using pupil light reflex (PLR) to chromatic light pulses and a portable measuring system. PLRs of both eyes were measured using blue and red light pulses aimed at either of the two eyes. The symptoms of cognitive function impairment were evaluated using a conventional dementia test during clinical surveillance. The extracted features of observed PLR waveforms for each eye remained at a comparable level for every group of participants. Three factor scores were calculated from the features, and a classification procedure for determining the level of dementia in a subject was created using regression analysis. As a result, the contribution of factor scores for blue light pulses on both eyes according to a participant’s age was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, K., et al.: Early detection of lower MMSE scores in elderly based on dual-task gait. IEEE Access 7, 40085–40094 (2019). https://doi.org/10.1109/ACCESS.2019.2906908

    Article  Google Scholar 

  2. Arevalo-Rodriguez, I., Segura, O., Solà, I., Bonfill, X., Sanchez, E., Alonso-Coello, P.: Diagonostic tools for Alzheimer’s disease dementia and other dementias: an overview of diagnostic test accuracy (DTA) systematic reviews. BMC Neurol. 14(183), 1–8 (2014). https://doi.org/10.1186/s12883-014-0183-2

    Article  Google Scholar 

  3. Asanad, S., et al.: The retinal choroid as an oculavascular biomarker for Alzheimer’s dementia: A histopathological study in severe disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Diesease Monitoring 11, 775–783 (2019). https://doi.org/10.1016/j.dadm.2019.08.005

    Article  Google Scholar 

  4. Beatty, J.: Task-evoked pupillary response, processing load, and the structure of processing resources. Psychol. Bull. 91(2), 276–292 (1982). https://doi.org/10.1037/0033-2909.91.2.276

    Article  Google Scholar 

  5. Bittner, D.M., Wieseler, I., Wilhelm, H., Riepe, M.W., Müller, N.G.: Repetitive pupil light reflex: Potential marker in Alzheimer’s disease? J. Alzheimers Dis. 42, 1469–1477 (2014). https://doi.org/10.3233/JAD-140969

    Article  Google Scholar 

  6. Breijyeh, Z., Karaman, R.: Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(5789), 1–28 (2020). https://doi.org/10.3390/molecules25245789

    Article  Google Scholar 

  7. Chávez-Fumagalli, M.A., et al.: Diagnosis of Alzheimer’s disease in developed and developing countries: systematic review and meta-analysis of diagnostic test accuracy. J. Alzheimer’s Disease Reports 5, 15–30 (2021). https://doi.org/10.3233/ADR-200263

    Article  Google Scholar 

  8. Chougule, P.S., Najjar, R.P., Finkelstein, M.T., Kandiah, N., Milea, D.: Light-induced pupillary responses in Alzheimer’s disease. Front. Neurol. 10(360), 1–12 (2019). https://doi.org/10.3389/fneur.2019.00360

    Article  Google Scholar 

  9. Feigl, B., Zele, A.J.: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Ophthalmol. Visual Sci. 91D(8), August 2014. https://doi.org/10.1097/OPX.0000000000000284

  10. Ferrari, C., Sorbi, S.: The comlexity of Alzheimer’s disease: an evolving puzzle. Physiol. Rev. 101, 1047–1081 (2021). https://doi.org/10.1152/physrev.00015.2020

    Article  Google Scholar 

  11. Folstein, M.F., Folstein, S.E., McHugh, P.R.: MINI-MENTAL STATE - a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975). https://doi.org/10.1016/0022-3956(75)90026-6

    Article  Google Scholar 

  12. Fotiou, D.F., Setergiou, V., Tsiptsios, D., Lithari, C., Nakou, M., Karlovasitou, A.: Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int. J. Psychophysiol. 73, 143–149 (2009). https://doi.org/10.1016/j.ijpsycho.2009.01.011

    Article  Google Scholar 

  13. Fotiou, D., Kaltsatou, A., Tsiptsios, D., Nakou, M.: Evaluation of the cholinergic hypothesis in Alzheimer’s disease with neuropsychological methods. Aging Clin. Exp. Res. 27(5), 727–733 (2015). https://doi.org/10.1007/s40520-015-0321-8

    Article  Google Scholar 

  14. Frost, S., Kanagasingam, Y., Sohrabi, H., Bourgeat, P., Villemagne, V., Rowe, C.C., Macaulay, L.S., Szoeke, C., Ellis, K.A., Ames, D., Masters, C.L., Rainey-Smith, S., Martins, R.N., Group, A.R.: Pupil response biomarkers for early detection and monitoring of Alzheimer’s disease. Curr. Alzheimer Res. 10(9), 931–939 (2013). https://doi.org/10.2174/15672050113106660163

    Article  Google Scholar 

  15. Gamlin, P.D., McDougal, D.H., Pokorny, J.: Human and macaque pupil responses driven by melanopisn-containing retinal ganglion cells. Vision. Res. 47, 946–954 (2007). https://doi.org/10.1016/j.visres.2006.12.015

    Article  Google Scholar 

  16. Haj, M.E., Chapelet, G., Moustafa, A.A., Boutoleau-Bretonnière, C.: Pupil size as an indicator of cognitive activity in mild Alzheimer’s disease. EXCLI J. 21, 307–316 (2022). https://doi.org/10.17179/excli2021-4568

  17. Jarrold, W., et al.: Aided diagnosis of dimentia type through computer-based analysis of spontaneous speech. In: Proceedings of Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pp. 27–37. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/W14-3204

  18. Kankipati, L., Girkin, C.A., Gamlin, P.D.: The post-illumination pupil response is reduced in Glaucoma patients. Visual Neurophysiol. 52(5), 2287–2292 (2011). https://doi.org/10.1167/iovs.10-6023

    Article  Google Scholar 

  19. Kankipati, L., Girkin, C.A., Gamlin, P.D.: Post-illumination pupil response in subjects without ocular disease. Invest. Ophthalmol. Visual Sci. 51(5), 2764–2769 (2010). https://doi.org/10.1167/iovs.10-6023

    Article  Google Scholar 

  20. Kardon, R.H., Anderson, S.C., Damarjian, T.G., Grace, E.M., Stone, E., Kawasaki, A.: Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 118(2), 376–381 (2011). https://doi.org/10.1016/j.ophtha.2010.06.033

    Article  Google Scholar 

  21. Kawasaki, A., Kardon, R.H.: Intrinsically photosensitive retinal ganglion cells. J. Neuroophthalmol. 27, 195–204 (2007)

    Article  Google Scholar 

  22. Kelbsch, C., et al.: Standards in pupillography. Front. Neurol. 10(129), 1–26 (2019). https://doi.org/10.3389/fneur.2019.00129

    Article  Google Scholar 

  23. Khoury, R., Ghossoub, E.: Diagnostic biomarkers of Alzheimer’s disease: a state-of-the-art review. Biomarkers Neuropsychiatry 1, 1–6 (2019). https://doi.org/10.1016/j.bionps.2019.100005

    Article  Google Scholar 

  24. Klumpp, P., Fritsch, J., Noeth, E.: ANN-based Alzheimer’s disease classification from bag of words. In: Proceedings of Speech Communication; 13th ITG-Symposium, pp. 1–4. IEEE (2018). https://ieeexplore.ieee.org/document/8578051

  25. Kuhlmann, J., Böttcher, M. (eds.): Pupillography: Principles. Methods and Applications. W. Zuckschwerdt Verlag, Munchen (1999)

    Google Scholar 

  26. Lim, J.K.H., et al.: The eye as a biomarker for Alzheimer’s disease. Front. Neurol. 10(536), 1–14 (2016). https://doi.org/10.3389/fnins.2016.00536

    Article  Google Scholar 

  27. Marcucci, V., Kleiman, J.: Biomarkers and their implications in Alzheimer’s disease: a literature review. Expl. Res. Hypothesis Med. 6(4), 164–176 (2021). https://doi.org/10.14218/ERHM.2021.00016

  28. McDougal, D.H., Gamlin, P.D.: Autonomic control of the eye. Compr. Physiol. 5(1), 439–473 (2015). https://doi.org/10.1002/cphy.c140014

    Article  Google Scholar 

  29. Nakayama, M., Nowak, W., Ishikawa, H., Asakawa, K., Ichibe, Y.: Discovering irregular pupil light responses to chromatic stimuli using waveform shapes of pupillograms. EURASIP J. Bioinf. Syst. Biol. 2014(1), 1–14 (2014). https://doi.org/10.1186/s13637-014-0018-x

    Article  Google Scholar 

  30. Nakayama, M., Nowak, W., Zarowska, A.: Detecting symptoms of dementia in elderly persons using features of pupil light reflex. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 745–749 (2022). https://doi.org/10.15439/2022F17

  31. Nowak, W., Nakayama, M., Kręcicki, T., Hachoł, A.: Detection procedures for patients of Alzheimer’s disease using waveform features of pupil light reflex in response to chromatic stimuli. EAI Endorsed Trans. Pervasive Health Technol. 6, 1–11 (2020). https://doi.org/10.4108/eai.17-12-2020.167656, e6

  32. Nowak, W., Nakayama, M., Kręcicki, T., Trypka, E., Andrzejak, A., Hachoł, A.: Analysis for extracted features of pupil light reflex to chromatic stimuli in Alzheimer’s patients. EAI Endorsed Trans. Pervasive Health Technol. 5, 1–10 (2019). https://doi.org/10.4108/eai.13-7-2018.161750, e4

  33. Nowak, W., Nakayama, M., Trypka, E., Zarowska, A.: Classification of Alzheimer’s disease patients using metric of oculo-motors. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 403–407 (2021). https://doi.org/10.15439/2021F32

  34. Oh, A.J., et al.: Pupillary evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer’s disease. PLoS ONE 14(12), 1–17 (2019). https://doi.org/10.1371/journal.pone.0226197

    Article  Google Scholar 

  35. Porsteinsson, A., Isaacson, R., Knox, S., Sabbagh, M., Rubino, I.: Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J. Prevent. Alzheimer’s Disease 8, 371–386 (2021). https://doi.org/10.14283/jpad.2021.23

  36. van der Schaar, J., et al.: Considerations regarding a diagnosis of Alzheimer’s disease before dementia: a systematic review. Alzheimer’s Res. Therapy 14(31), 1–12 (2022). https://doi.org/10.1186/s13195-022-00971-3

    Article  Google Scholar 

  37. Scinto, L., Frosch, M., Wu, C., Daffner, K., Gedi, N., Geula, C.: Selective cell loss in Edinger-Westphal in asymptomatic elders and Alzheimer’s patients. Neurobiol. Aging 22(5), 729–736 (2001). https://doi.org/10.1016/s0197-4580(01)00235-4

    Article  Google Scholar 

  38. Tombaugh, T., McDowell, I., Kristjansson, B., Hubley, A.: Mini-mental state examination (MMSE) and the modified MMSE (3MS): a psychometric comparison and normative data. Psychol. Assess. 8(1), 48–59 (1996). https://doi.org/10.1037/1040-3590.8.1.48

    Article  Google Scholar 

  39. Turner, R.S., Stubbs, T., Davies, D.A., Albensi, B.C.: Potential new approaches for diagnosis of Alzheimer’s disease and related dementia. Front. Neurol. 11(496), 1–10 (2020). https://doi.org/10.3389/fneur.2020.00496

    Article  Google Scholar 

  40. Zele, A.J., Adhikari, P., Cao, D., Feigl, B.: Melanopsin and cone photoreceptor inputs to the afferent pupil light response. Front. Neurol. 10(529), 1–9 (2019). https://doi.org/10.3389/fneur.2019.00529

    Article  Google Scholar 

  41. Zhou, L., Fraser, K.C., Rudzicz, F.: Speech recognition in Alzheimer’s disease and in its assessment. In: Proceedings of INTERSPEECH 2016. pp. 1948–1952. ISCA (2016). https://doi.org/10.21437/Interspeech. 2016–1228

  42. Zivcevska, M., Blakeman, A., Lei, S., Goltz, H.C., Wong, A.M.F.: Binocular summation in postillumination pupil response driven by melanopsin-containing retinal ganglion cells. Vis. Neurosci. 59, 4968–4977 (2018). https://doi.org/10.1167/iovs.18-24639

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Japan Science and Technology Agency (JST), Adaptable and Seamless Technology transfer program through target driven R&D (A-STEP) [JPMJTM20CQ, 2020–2022].

The authors would like to thank Prof. Masatoshi Takeda and Prof. Takenori Komatsu of Osaka Kawasaki Rehabilitation University, Toshinobu Takeda, MD at the Jinmeikai Clinic, Yasuhiro Ohta and Takato Uratani of the Uratani Lab Company Ltd. for their kind contributions,

This paper is an extended version of the conference paper which has been presented at the 17th Conference on Computer Science and Intelligence Systems [30]. The authors also would like to thank the reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakayama, M., Nowak, W., Zarowska, A. (2023). Symptoms of Dementia in Elderly Persons Using Waveform Features of Pupil Light Reflex. In: Ziemba, E., Chmielarz, W., Wątróbski, J. (eds) Information Technology for Management: Approaches to Improving Business and Society. FedCSIS-AIST ISM 2022 2022. Lecture Notes in Business Information Processing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-29570-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29570-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29569-0

  • Online ISBN: 978-3-031-29570-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics