Skip to main content

Assessment of Optimisation Results for Shared Cars

  • Conference paper
  • First Online:
Information Technology for Management: Approaches to Improving Business and Society (FedCSIS-AIST 2022, ISM 2022)

Abstract

This study is devoted to the assessment of potential additional income obtainable by dynamically relocating shared e-vehicles. The model describes one-way trips and dynamic relocations of e-vehicles between sectors by service personnel according to a dynamically compiled list of service trips. A MIP (Mixed-Integer Programming) type algorithm is used to optimize the transfer of dynamically selected e-vehicles. The developed solution has been implemented and validated for its practical application in Riga, Latvia. The study resulted in two types of assessments: (1) simulating e-vehicle relocations for different numbers of cars and service personnel resulted in an estimate of revenue growth between 9% and 18% compared with service income without an e-vehicle transfer, (2) relocation of shared cars according to a system-generated dynamically compiled optimized list of trips allowed the company to raise potential revenue by 29% to 52%, compared with relocations based on service personnel intuition and experience. The results demonstrate the efficiency of optimization algorithms for dynamic planning of shared e-vehicles’ relocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilera-GarcĂ­a, A., Gomez, J., Sobrino, N.: Exploring the adoption of moped scooter-sharing systems in Spanish urban areas. J. Cities 96, 102424 (2020). https://doi.org/10.1016/j.cities.2019.102424

    Article  Google Scholar 

  2. Ashqar, H.I., Elhenawy, M., Rakha, H.A.: Modeling bike counts in a bike-sharing system considering the effect of weather conditions. Case Stud. Transp. Policy 7, 261–268 (2019). https://doi.org/10.1016/j.cstp.2019.02.011

    Article  Google Scholar 

  3. Bicevskis, J., Nikiforova, A., Karnitis, G., Oditis, I., Bicevska, Z.: Optimization of processes for shared cars. In: Proceedings of the 17th Conference on Computer Science and Intelligence Systems. ACSIS, vol. 30, pp. 763–767 (2022). https://doi.org/10.15439/2022F87

  4. Bicevskis, J., Nikiforova, A., Karnitis, G., Oditis, I., Bicevska, Z.: Risks of concurrent execution in e-commerce processes. In: Proceedings of the 16th Conference on Computer Science and Intelligence Systems. ACSIS, vol. 25, pp. 447–451 (2021). https://doi.org/10.15439/2021F70

  5. Bicevskis, J., Karnitis, G., Bicevska, Z., Oditis, I.: Analysis of concurrent processes in internet of things solutions. In: Ziemba, E., Chmielarz, W. (eds.) FedCSIS-AIST/ISM-2021. LNBIP, vol. 442, pp. 26–41. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98997-2_2

    Chapter  Google Scholar 

  6. Ivo, O, Viesturs, S, Janis, B: Optimization of relocation processes for shared e-vehicles. Baltic J. Mod. Comput. 10(2), 185–204 (2022). https://doi.org/10.22364/bjmc.2022.10.2.07

  7. Boyacı, H., Zografos, K.G., Geroliminis, N.: An optimization framework for the development of efficient one-way car-sharing systems. Eur. J. Oper. Res. 240(3), 718–733 (2015). https://doi.org/10.1016/j.ejor.2014.07.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandstätter, G., et al.: Overview of optimization problems in electric car-sharing system design and management. In: Dawid, H., Doerner, K.F., Feichtinger, G., Kort, P.M., Seidl, A. (eds.) Dynamic Perspectives on Managerial Decision Making. DMEEF, vol. 22, pp. 441–471. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39120-5_24

    Chapter  Google Scholar 

  9. Burkart, K.: Environment & Sustanaibility. https://www.ioes.ucla.edu/person/karl-burkart/. Accessed 15 Dec 2022

  10. Ciari, F., Schuessler, N., Axhausen, K.W.: Estimation of carsharing demand using an activity-based microsimulation approach: model discussion and some results. J. Sustain. Transport. 7, 70–84 (2013). https://doi.org/10.1080/15568318.2012.660113

    Article  Google Scholar 

  11. Crane, K., Ecola, L., Hassell, S., Natarah, S.: An alternative approach for identifying opportunities to reduce emissions of greenhouse gases. Technical report, RAND Corporation (2012). https://www.rand.org/pubs/technical_reports/TR1170.html

  12. Çelebi, D., Yörüsün, A., Işık, H.: Bicycle sharing system design with capacity allocations. J. Transp. Res. Part B Methodol. 114, 86–98 (2018). https://doi.org/10.1016/j.trb.2018.05.018

    Article  Google Scholar 

  13. Gambella, C., Malaguti, E., Masini, F., Vigo, D.: Optimizing relocation operations in electric car-sharing. Omega 81, 234–245 (2018). https://doi.org/10.1016/j.omega.2017.11.007

    Article  Google Scholar 

  14. Huang, K., An, K., de Almeida Correia, G.H.: Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions. Eur. J. Oper. Res. 287, 1075–1091 (2020). https://doi.org/10.1016/j.ejor.2020.05.001

    Article  MathSciNet  MATH  Google Scholar 

  15. Illgen, S., Höck, M.: Literature review of the vehicle relocation problem in one-way car sharing networks. J. Transport. Res. Part B Methodol. 120, 193–204 (2019). https://doi.org/10.1016/j.trb.2018.12.006

    Article  Google Scholar 

  16. Jin, F., Yao, E., An, K.: Analysis of the potential demand for battery electric vehicle sharing: mode share and spatiotemporal distribution. J. Transport. Geogr. 82, 102630 (2020). https://doi.org/10.1016/j.jtrangeo.2019.102630

    Article  Google Scholar 

  17. Yuan, M., Zhang, Q., Wang, B., Liang, Y., Zhang, H.: A mixed integer linear programming model for optimal planning of bicycle sharing systems: a case study in Beijing. Sustain. Cities Soc. 47, 101515 (2019). https://doi.org/10.1016/j.scs.2019.101515

    Article  Google Scholar 

  18. Kutela, B., Teng, H.: The influence of campus characteristics, temporal factors, and weather events on campuses-related daily bike-share trips. J. Transport. Geogr. 78, 160–169 (2019). https://doi.org/10.1016/j.jtrangeo.2019.06.002

    Article  Google Scholar 

  19. Li, Q., Liao, F., Timmermans, H.J., Huang, H., Zhou, J.: Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: a demand-side model. J. Transp. Res. Part B Methodol. 107, 102–123 (2018). https://doi.org/10.1016/j.trb.2017.11.011

    Article  Google Scholar 

  20. Lin, J.R., Yang, T.H.: Strategic design of public bicycle sharing systems with service level constraints. J. Transport. Res. Part E Logist. Transport. Rev. 47(2), 284–294 (2011). https://doi.org/10.1016/j.tre.2010.09.004

  21. Miao, H., Jia, H., Li, J., Qiu, T.Z.: Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: a unified two-stage multi-objective optimization methodology. Energy 169, 797–818 (2019). https://doi.org/10.1016/j.energy.2018.12.066

    Article  Google Scholar 

  22. de Almeida Correia, H., Antunes, A.P.: Optimization approach to depot location and trip selection in one-way carsharing systems. J. Transport. Res. Part E Logist. Transport. Rev. 48(1), 233–247 (2012). https://doi.org/10.1016/j.tre.2011.06.003

  23. SciPy documentation: Multidimensional image processing, scipy.ndimage. gaussian_filter. https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html

  24. Scott, D.M., Ciuro, C.: What factors influence bike share ridership? An investigation of Hamilton, Ontario’s bike share hubs. Travel. Behav. Soc. 16, 50–58 (2019). https://doi.org/10.1016/j.tbs.2019.04.003

    Article  Google Scholar 

  25. Shaheen, S.A., Cohen, A.P.: Carsharing and personal vehicle services: worldwide market developments and emerging trends. Int. J. Sustain. Transport. 7(1), 5–34 (2013). https://doi.org/10.1080/15568318.2012.660103

    Article  Google Scholar 

  26. Soriguera, F., Jiménez, E.: A continuous approximation model for the optimal design of public bike-sharing systems. Sustain. Cities Soc. 52, 101826 (2020). https://doi.org/10.1016/j.scs.2019.101826

    Article  Google Scholar 

  27. Vasconcelos, A.S., Martinez, L.M., Correia, G.H., Guimarães, D.C., Farias, T.L.: Environmental and financial impacts of adopting alternative vehicle technologies and relocation strategies in station-based one-way carsharing: an application in the city of Lisbon, Portugal. J. Transport. Res. Part D Transport. Environ. 57, 350–362 (2017). https://doi.org/10.1016/j.trd.2017.08.019

  28. Vine, S.L., Sivakumar, A., Polak, J.: Traveller preferences for free-floating carsharing vehicle allocation mechanisms. J. Transport. Res. C Emerg. Technol. 102, 1–19 (2019). https://doi.org/10.1016/j.trc.2019.02.019

    Article  Google Scholar 

  29. Zhang, D., Liu, Y., He, S.: Vehicle assignment and relays for one-way electric car-sharing systems. J. Transp. Res. Part B Methodol. 120, 125–146 (2019). https://doi.org/10.1016/j.trb.2018.12.004

    Article  Google Scholar 

  30. Ziemba, E., Chmielarz, W. (eds.): ISM 2020, and FedCSIS-IST 2020. LNBIP. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-71846-6

  31. Zografos, K., Geroliminis, G.: An optimization framework for the development of efficient one-way car-sharing systems. Eur. J. Oper. Res. 240, 718–733 (2015). https://doi.org/10.1016/j.ejor.2014.07.020

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by University of Latvia project AAP2016/B032 “Innovative information technologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Bicevskis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bicevskis, J., Spulis, V., Bicevska, Z., Oditis, I. (2023). Assessment of Optimisation Results for Shared Cars. In: Ziemba, E., Chmielarz, W., WÄ…trĂłbski, J. (eds) Information Technology for Management: Approaches to Improving Business and Society. FedCSIS-AIST ISM 2022 2022. Lecture Notes in Business Information Processing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-29570-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29570-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29569-0

  • Online ISBN: 978-3-031-29570-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics