Skip to main content

The Iterative Compromise Ranking Analysis (ICRA) - The New Approach to Make Reliable Decisions

  • Conference paper
  • First Online:
Information Technology for Management: Approaches to Improving Business and Society (FedCSIS-AIST 2022, ISM 2022)

Abstract

In the field of multi-criteria decision-making, compromise is often sought because it is highly desirable for decision-making. However, over the years, many methods have been developed for decision-making, between which discrepancies in the final rankings are often present. For this reason, it is worth noting the possibility of a compromise between different multi-criteria decision-making methods. One such solution is the Iterative Compromise Ranking Analysis (ICRA), which, by means of an iterative evaluation of the preferences of alternatives, leads to a compromise between the methods under consideration. This work presents an example of a solution to a theoretical decision problem, for which five methods were used: TOPSIS, VIKOR, MARCOS, MABAC and EDAS. In addition, an empirical analysis of the compromise solution was carried out to check the effect of parameters on the number of iterations needed to reach a compromise and the differences between the rankings proposed by the methods and the compromise ranking. The work showed that this is an interesting tool that can find its use in the field of multi-criteria decision-making as well as can be used to analyze the behaviour of multi-criteria decision-making methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdul, D., Wenqi, J., Tanveer, A.: Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology. Renew. Energy 184, 1018–1032 (2022). https://doi.org/10.1016/j.renene.2021.10.082

    Article  Google Scholar 

  2. Bączkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Wątróbski, J., Sałabun, W.: Methodical aspects of MCDM based e-commerce recommender system. J. Theor. Appl. Electron. Commer. Res. 16(6), 2192–2229 (2021). https://doi.org/10.3390/jtaer16060122

    Article  Google Scholar 

  3. Ceballos, B., Lamata, M.T., Pelta, D.A.: A comparative analysis of multi-criteria decision-making methods. Progr. Artif. Intell. 5(4), 315–322 (2016). https://doi.org/10.1007/s13748-016-0093-1

    Article  Google Scholar 

  4. Chodha, V., Dubey, R., Kumar, R., Singh, S., Kaur, S.: Selection of industrial arc welding robot with topsis and entropy MCDM techniques. Mater. Today Proc. 50, 709–715 (2022). https://doi.org/10.1016/j.matpr.2021.04.487

    Article  Google Scholar 

  5. Diakoulaki, D., Mavrotas, G., Papayannakis, L.: Determining objective weights in multiple criteria problems: the critic method. Comput. Oper. Res. 22(7), 763–770 (1995). https://doi.org/10.1016/0305-0548(94)00059-H

    Article  MATH  Google Scholar 

  6. Duckstein, L., Opricovic, S.: Multiobjective optimization in river basin development. Water Resour. Res. 16(1), 14–20 (1980). https://doi.org/10.1029/WR016i001p00014

    Article  Google Scholar 

  7. Ecer, F.: A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renew. Sustain. Energy Rev. 143, 110916 (2021). https://doi.org/10.1016/j.rser.2021.110916

    Article  Google Scholar 

  8. Ghaleb, A.M., Kaid, H., Alsamhan, A., Mian, S.H., Hidri, L.: Assessment and comparison of various MCDM approaches in the selection of manufacturing process. Adv. Mater. Sci. Eng. 2020, 1–16 (2020). https://doi.org/10.1155/2020/4039253

  9. Gul, M., Celik, E., Aydin, N., Gumus, A.T., Guneri, A.F.: A state of the art literature review of VIKOR and its fuzzy extensions on applications. Appl. Soft Comput. 46, 60–89 (2016). https://doi.org/10.1016/j.asoc.2016.04.040

    Article  Google Scholar 

  10. Ju, Y., Wang, A.: Extension of VIKOR method for multi-criteria group decision making problem with linguistic information. Appl. Math. Model. 37(5), 3112–3125 (2013). https://doi.org/10.1016/j.apm.2012.07.035

    Article  MathSciNet  MATH  Google Scholar 

  11. Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E.K., Turskis, Z., Antucheviciene, J.: Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry 13(4), 525 (2021). https://doi.org/10.3390/sym13040525

    Article  Google Scholar 

  12. Keshavarz Ghorabaee, M., Zavadskas, E.K., Olfat, L., Turskis, Z.: Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26(3), 435–451 (2015)

    Article  Google Scholar 

  13. Kizielewicz, B., Shekhovtsov, A., Sałabun, W.: A novel iterative approach to determining compromise rankings. In: 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 783–787. IEEE (2022). https://doi.org/10.15439/2022F255

  14. Krishnan, A.R., Kasim, M.M., Hamid, R., Ghazali, M.F.: A modified critic method to estimate the objective weights of decision criteria. Symmetry 13(6), 973 (2021). https://doi.org/10.3390/sym13060973

    Article  Google Scholar 

  15. Lamboray, C.: A comparison between the prudent order and the ranking obtained with Borda’s, Copeland’s, slater’s and Kemeny’s rules. Math. Soc. Sci. 54(1), 1–16 (2007). https://doi.org/10.1016/j.mathsocsci.2007.04.004

    Article  MathSciNet  MATH  Google Scholar 

  16. Lestari, S., Adji, T.B., Permanasari, A.E.: Performance comparison of rank aggregation using Borda and Copeland in recommender system. In: 2018 International Workshop on Big Data and Information Security (IWBIS), pp. 69–74. IEEE (2018). https://doi.org/10.1109/IWBIS.2018.8471722

  17. Muravyov, S.V., Emelyanova, E.Y.: Kemeny rule for preference aggregation: reducing all exact solutions to a single one. Measurement 182, 109403 (2021). https://doi.org/10.1016/j.measurement.2021.109403

    Article  Google Scholar 

  18. Özdağoğlu, A., Keleş, M.K., Altınata, A., Ulutaş, A.: Combining different MCDM methods with the Copeland method: an investigation on motorcycle selection. J. Process. Manag. New Technol. 9(3–4), 13–27 (2021). https://doi.org/10.5937/jpmnt9-34120

    Article  Google Scholar 

  19. Pamučar, D., Ćirović, G.: The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Syst. Appl. 42(6), 3016–3028 (2015). https://doi.org/10.1016/j.eswa.2014.11.057

    Article  Google Scholar 

  20. Paradowski, B., Shekhovtsov, A., Bączkiewicz, A., Kizielewicz, B., Sałabun, W.: Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. Symmetry 13(10), 1874 (2021). https://doi.org/10.3390/sym13101874

    Article  Google Scholar 

  21. Podvezko, V., Zavadskas, E.K., Podviezko, A.: An extension of the new objective weight assessment methods CILOS and IDOCRIW to fuzzy MCDM. Econ. Comput. Econ. Cybern. Stud. Res. 54(2) (2020). https://doi.org/10.24818/18423264/54.2.20.04

  22. Qin, J., Liu, X., Pedrycz, W.: An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment. Knowl.-Based Syst. 86, 116–130 (2015). https://doi.org/10.1016/j.knosys.2015.05.025

    Article  Google Scholar 

  23. Roozbahani, A., Ebrahimi, E., Banihabib, M.E.: A framework for ground water management based on Bayesian network and MCDM techniques. Water Resour. Manag. 32(15), 4985–5005 (2018). https://doi.org/10.1007/s11269-018-2118-y

    Article  Google Scholar 

  24. Serrai, W., Abdelli, A., Mokdad, L., Hammal, Y.: Towards an efficient and a more accurate web service selection using MCDM methods. J. Comput. Sci. 22, 253–267 (2017). https://doi.org/10.1016/j.jocs.2017.05.024

    Article  Google Scholar 

  25. Stević, Ž, Pamučar, D., Puška, A., Chatterjee, P.: Sustainable supplier selection in healthcare industries using a new MCDM method: measurement of alternatives and ranking according to compromise solution (MARCOS). Comput. Industr. Eng. 140, 106231 (2020). https://doi.org/10.1016/j.cie.2019.106231

    Article  Google Scholar 

  26. Sun, R., Hu, J., Zhou, J., Chen, X.: A hesitant fuzzy linguistic projection-based MABAC method for patients’ prioritization. Int. J. Fuzzy Syst. 20(7), 2144–2160 (2017). https://doi.org/10.1007/s40815-017-0345-7

    Article  Google Scholar 

  27. Wang, J., Wei, G., Wei, C., Wei, Y.: MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Defence Technol. 16(1), 208–216 (2020). https://doi.org/10.1016/j.dt.2019.06.019

    Article  Google Scholar 

  28. Wątróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zioło, M.: Generalised framework for multi-criteria method selection. Omega 86, 107–124 (2019). https://doi.org/10.1016/j.omega.2018.07.004

    Article  Google Scholar 

  29. Wu, X., Liao, H., Xu, Z., Hafezalkotob, A., Herrera, F.: Probabilistic linguistic multimoora: a multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Trans. Fuzzy Syst. 26(6), 3688–3702 (2018). https://doi.org/10.1109/TFUZZ.2018.2843330

    Article  Google Scholar 

  30. Yazdani, M., Zarate, P., Zavadskas, E.K., Turskis, Z.: A combined compromise solution (COCOSO) method for multi-criteria decision-making problems. Manag. Decis. 57(9), 2501–2519 (2018). https://doi.org/10.1108/MD-05-2017-0458

    Article  Google Scholar 

  31. Zavadskas, E.K., Podvezko, V.: Integrated determination of objective criteria weights in MCDM. Int. J. Inf. Technol. Decis. Making 15(02), 267–283 (2016). https://doi.org/10.1142/S0219622016500036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Sałabun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paradowski, B., Kizielewicz, B., Shekhovtsov, A., Sałabun, W. (2023). The Iterative Compromise Ranking Analysis (ICRA) - The New Approach to Make Reliable Decisions. In: Ziemba, E., Chmielarz, W., Wątróbski, J. (eds) Information Technology for Management: Approaches to Improving Business and Society. FedCSIS-AIST ISM 2022 2022. Lecture Notes in Business Information Processing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-29570-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29570-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29569-0

  • Online ISBN: 978-3-031-29570-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics