Abstract
This work proposes Adaptive Facilitated Mutation, a self-adaptive mutation method for Structured Grammatical Evolution (SGE), biologically inspired by the theory of facilitated variation. In SGE, the genotype of individuals contains a list for each non-terminal of the grammar that defines the search space. In our proposed mutation, each individual contains an array with a different, self-adaptive mutation rate for each non-terminal. We also propose Function Grouped Grammars, a grammar design procedure to enhance the benefits of the propose mutation. Experiments were conducted on three symbolic regression benchmarks using Probabilistic Structured Grammatical Evolution (PSGE), a variant of SGE. Results show our approach is similar or better when compared with the standard grammar and mutation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Whigham, P.A., Science, D.O.C.: Grammatically-based genetic programming (1995)
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930
McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–396 (2010). https://doi.org/10.1007/s10710-010-9109-y
Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the “best of both worlds” of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1111–1118. ACM (2015)
Lourenço, N., Assunção, F., Pereira, F.B., Costa, E., Machado, P.: Structured grammatical evolution: a dynamic approach. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 137–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_6
Lourenço, N., Ferrer, J., Pereira, F.B., Costa, E.: A comparative study of different grammar-based genetic programming approaches. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 311–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_20
Medvet, E.: A comparative analysis of dynamic locality and redundancy in grammatical evolution. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 326–342. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_21
Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17(3), 251–289 (2016). https://doi.org/10.1007/s10710-015-9262-4
Gerhart, J., Kirschner, M.: The theory of facilitated variation. Proc. Natl. Acad. Sci. 104(1), 8582–8589 (2007). https://doi.org/10.1073/pnas.0701035104
Nicolau, M., Agapitos, A.: Understanding grammatical evolution: grammar design. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 23–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_2
Nicolau, M.: Automatic grammar complexity reduction in grammatical evolution. In: The 3rd Grammatical Evolution Workshop: A Workshop of the 2004 Genetic and Evolutionary Computation Conference (GECCO 2004), Seattle, Washington, USA, 26–30 June 2004. Seattle, Washington, USA (2004)
Dick, G., Whigham, P.A.: Initialisation and grammar design in grammar-guided evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2022), pp. 534–537. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3520304.3529051
Hemberg, E.: Pre-, in-and postfix grammars for symbolic regression in grammatical evolution (2008)
Ryan, C., O’Neill, M., Collins, J.J. (eds.): Handbook of Grammatical Evolution. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6
Megane, J., Lourenco, N., Machado, P.: Probabilistic structured grammatical evolution. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 991–999. IEEE (2022). https://doi.org/10.1109/cec55065.2022.9870397
Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 292–302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_27
Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in grammatical evolution. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 465–475. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_46
Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976_29
Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program. Evolvable Mach. 18(4), 467–507 (2017). https://doi.org/10.1007/s10710-017-9309-9
O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2_70
Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An analysis of genotype-phenotype maps in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 62–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12148-7_6
Mégane, J., Lourenço, N., Machado, P.: Probabilistic grammatical evolution. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 198–213. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_13
Mégane, J., Lourenço, N., Machado, P.: Co-evolutionary probabilistic structured grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 991–999. ACM (2022). https://doi.org/10.1145/3512290.3528833
Beyer, H., Schwefel, H.: Evolution strategies - a comprehensive introduction. Nat. Comput. 1, 3–52 (2004). https://doi.org/10.1023/A:1015059928466
Hinterding, R.: Gaussian mutation and self-adaption for numeric genetic algorithms. In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, vol. 1, p. 384. IEEE (1995)
Teo, J.: Self-adaptive mutation for enhancing evolutionary search in real-coded genetic algorithms. In: 2006 International Conference on Computing & Informatics, pp. 1–6. IEEE (2006)
Libelli, S.M., Alba, P.: Adaptive mutation in genetic algorithms. Soft Comput. 4(2), 76–80 (2000). https://doi.org/10.1007/s005000000042
Lis, J.: Genetic algorithm with the dynamic probability of mutation in the classification problem. Pattern Recogn. Lett. 16(12), 1311–1320 (1995)
Stark, N., Minetti, G.F., Salto, C.: A new strategy for adapting the mutation probability in genetic algorithms (2012)
Cruz-Salinas, A.F., Perdomo, J.G.: Self-adaptation of genetic operators through genetic programming techniques. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 913–920. ACM (2017)
Gomez, J.: Self adaptation of operator rates in evolutionary algorithms. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 1162–1173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_113
Gómez, J., León, E.: On the class of hybrid adaptive evolutionary algorithms (chavela). Nat. Comput. 20(3), 377–394 (2021). https://doi.org/10.1007/s11047-021-09843-5
Montero, E., Riff, M.C.: Calibrating strategies for evolutionary algorithms. In: 2007 IEEE Congress on Evolutionary Computation. IEEE (2007)
Montero, E., Riff, M.-C.: Self-calibrating strategies for evolutionary approaches that solve constrained combinatorial problems. In: An, A., Matwin, S., Raś, Z.W., Ślȩzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 262–267. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68123-6_29
Coelho, V.N., et al.: Hybrid self-adaptive evolution strategies guided by neighborhood structures for combinatorial optimization problems. Evol. Comput. 24(4), 637–666 (2016)
Fagan, D., Hemberg, E., Nicolau, M., O’Neill, M., McGarraghy, S.: Towards adaptive mutation in grammatical evolution. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion (GECCO Companion 2012). ACM Press (2012)
Manzoni, L., Bartoli, A., Castelli, M., Goncalves, I., Medvet, E.: Specializing context-free grammars with a (1 + 1)-EA. IEEE Trans. Evol. Comput. 24(5), 960–973 (2020)
Tiso, S., Carvalho, P., Lourenço, N., Machado, P.: Structured mutation inspired by evolutionary theory enriches population performance and diversity. arXiv preprint arXiv:2302.00559 (2023)
White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2012). https://doi.org/10.1007/s10710-012-9177-2
McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference (GECCO 2012), , pp. 791–798. ACM Press (2012)
Harrison, D., Jr., Rubinfeld, D.L.: Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 5(1), 81–102 (1978)
Acknowledgments
This work was funded by FEDER funds through the Operational Programme Competitiveness Factors - COMPETE and national funds by FCT - Foundation for Science and Technology (POCI-01-0145-FEDER-029297, CISUC - UID/CEC/00326/2020) and within the scope of the project A4A: Audiology for All (CENTRO-01-0247-FEDER-047083) financed by the Operational Program for Competitiveness and Internationalisation of PORTUGAL 2020 through the European Regional Development Fund.
The first author is funded by FCT, Portugal, under the grant UI/BD/151053/2021 and the second under the grant 2022.10174.BD.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Carvalho, P., Mégane, J., Lourenço, N., Machado, P. (2023). Context Matters: Adaptive Mutation for Grammars. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-29573-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29572-0
Online ISBN: 978-3-031-29573-7
eBook Packages: Computer ScienceComputer Science (R0)