Abstract
We study the distinguishability of linearized Reed–Solomon (LRS) codes by defining and analyzing analogs of the square-code and the Overbeck distinguisher for classical Reed–Solomon and Gabidulin codes, respectively. Our main results show that the square-code distinguisher works for generalized linearized Reed–Solomon (GLRS) codes defined with the trivial automorphism, whereas the Overbeck-type distinguisher can handle LRS codes in the general setting. We further show how to recover defining code parameters from any generator matrix of such codes in the zero-derivation case. For other choices of automorphisms and derivations simulations indicate that these distinguishers and recovery algorithms do not work. The corresponding LRS and GLRS codes might hence be of interest for code-based cryptography.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In fact, the distinguisher recognizes a GLRS code with probability one. But, with a small probability, it might wrongly declare a non-GLRS code to be a GLRS code.
- 2.
In fact, the distinguisher recognizes a GLRS code with probability one. But, with a small probability, it might wrongly declare a non-GLRS code to be a GLRS code.
References
Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryptography standardization process (2022)
Alfarano, G.N., Lobillo, F.J., Neri, A., Wachter-Zeh, A.: Sum-rank product codes and bounds on the minimum distance. Finite Fields Appl. 80, 102013 (2022)
Barra, A., Gluesing-Luerssen, H.: MacWilliams extension theorems and the local-global property for codes over Frobenius rings. J. Pure Appl. Algebra 219(4), 703–728 (2015)
Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35(1), 63–79 (2005). https://doi.org/10.1007/s10623-003-6151-2
Caruso, X.: Residues of skew rational functions and linearized Goppa codes. arXiv preprint arXiv:1908.08430v1 (2019)
Caruso, X., Durand, A.: Duals of linearized Reed-Solomon codes. Des. Codes Crypt. 91, 241–271 (2022). https://doi.org/10.1007/s10623-022-01102-7
Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive ia.cr/2022/975 (2022)
Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41
Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosystem. Des. Codes Crypt. 48(2), 171–177 (2008). https://doi.org/10.1007/s10623-007-9160-8
Horlemann-Trautmann, A.L., Marshall, K., Rosenthal, J.: Considerations for rank-based cryptosystems. In: 2016 IEEE International Symposium on Information Theory, pp. 2544–2548 (2016)
Horlemann-Trautmann, A.L., Marshall, K., Rosenthal, J.: Extension of Overbeck’s attack for Gabidulin-based cryptosystems. Des. Codes Crypt. 86(2), 319–340 (2018). https://doi.org/10.1007/s10623-017-0343-7
Lam, T.Y., Leroy, A.: Vandermonde and Wronskian matrices over division rings. J. Algebra 119(2), 308–336 (1988)
Lu, H.f., Kumar, P.V.: A unified construction of space-time codes with optimal rate-diversity tradeoff. IEEE Trans. Inf. Theor. 51(5), 1709–1730 (2005)
Martínez-Peñas, U.: Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring. J. Algebra 504, 587–612 (2018)
Martínez-Peñas, U.: Hamming and simplex codes for the sum-rank metric. Des. Codes Crypt. 88(8), 1521–1539 (2020). https://doi.org/10.1007/s10623-020-00772-5
Martínez-Peñas, U., Kschischang, F.R.: Reliable and secure multishot network coding using linearized Reed-Solomon codes. IEEE Trans. Inf. Theor. 65(8), 4785–4803 (2019)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report, vol. 42–44, pp. 114–116 (1978)
Neri, A.: Twisted linearized Reed-Solomon codes: a skew polynomial framework. J. Algebra 609, 792–839 (2022)
Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2007). https://doi.org/10.1007/s00145-007-9003-9
Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_5
Overbeck, R.: Public key cryptography based on coding theory. Ph.D. thesis, Technical University of Darmstadt (2007)
Puchinger, S., Renner, J., Rosenkilde, J.: Generic decoding in the sum-rank metric. In: 2020 IEEE International Symposium on Information Theory, pp. 54–59 (2020)
Rashwan, H., Gabidulin, E.M., Honary, B.: A smart approach for GPT cryptosystem based on rank codes. In: 2010 IEEE International Symposium on Information Theory, pp. 2463–2467 (2010)
Schmidt, G., Sidorenko, V., Bossert, M.: Decoding Reed-Solomon codes beyond half the minimum distance using shift-register synthesis. In: 2006 IEEE International Symposium on Information Theory, pp. 459–463 (2006)
Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)
Stein, W.A., et al.: Sage mathematics software (version 9.7). The Sage Development Team (2022). http://www.sagemath.org
Wieschebrink, C.: An attack on a modified Niederreiter encryption scheme. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 14–26. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_2
Wieschebrink, C.: Cryptanalysis of the Niederreiter public-key scheme based on GRS subcodes. In: International Workshop on Post-quantum Cryptography, pp. 61–72 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hörmann, F., Bartz, H., Horlemann, AL. (2023). Distinguishing and Recovering Generalized Linearized Reed–Solomon Codes. In: Deneuville, JC. (eds) Code-Based Cryptography. CBCrypto 2022. Lecture Notes in Computer Science, vol 13839. Springer, Cham. https://doi.org/10.1007/978-3-031-29689-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-29689-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29688-8
Online ISBN: 978-3-031-29689-5
eBook Packages: Computer ScienceComputer Science (R0)