Skip to main content

Software Implementation of a Code-Based Key Encapsulation Mechanism from Binary QD Generalized Srivastava Codes

  • Conference paper
  • First Online:
Code-Based Cryptography (CBCrypto 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13839))

Included in the following conference series:

  • 199 Accesses

Abstract

In the NIST Post-Quantum Cryptography (PQC) standardization process, among 17 candidates for code-based public-key encryption (PKE), signature or key encapsulation mechanism (KEM), only three are in the 4th evaluation round. The remaining code-based candidates are Classic McEliece [CCUGLMMNPP+20], BIKE [ABBBBDGGGM+17] and HQC [MABBBBDDGL+20]. Cryptographic primitives from coding theory are some of the most promising candidates and their security is based on the well-known problems of post-quantum cryptography. In this paper, we present an efficient implementation of a secure KEM based on binary quasi-dyadic generalized Srivastava (QD-GS) codes. With QD-GS codes defined for an extension degree \(m>2\), this key establishment scheme is protected against the attacks of Barelli-Couvreur Bardet et al.. We also provide parameters that are secure against folding technique and FOPT attacks. Finally, we compare the performance of our implementation in runtime with the NIST finalists based on codes for the 4th round.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aragon, N., et al.: BIKE: Bit Flipping Key Encapsulation (2017). https://bikesuite.org/files/v4.2/BIKE_Spec021.09.29.1.pdf. Accessed 09 Dec 2022

  2. Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math. Cryptol. 12(4), 221–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banegas, G., et al.: DAGS: reloaded revisiting dyadic key encapsulation. In: Baldi, M., Persichetti, E., Santini, P. (eds.) CBC 2019. LNCS, vol. 11666, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25922-8_4

    Chapter  Google Scholar 

  4. Bardet, M., Bertin, M., Couvreur, A., Otmani, A.: Practical algebraic attack on DAGS. In: Baldi, M., Persichetti, E., Santini, P. (eds.) CBC 2019. LNCS, vol. 11666, pp. 86–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25922-8_5

    Chapter  Google Scholar 

  5. Banegas, G., Barreto, P.S., Persichetti, E., Santini, P.: Designing efficient dyadic operations for cryptographic applications. J. Math. Cryptol. 14(1), 95–109 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_4

    Chapter  Google Scholar 

  7. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6

    Chapter  Google Scholar 

  8. Chou, T., et al.: Classic McEliece: conservative code-based cryptography (2020). https://classic.mceliece.org/nist/mceliece-20201010.pdf. Accessed 09 Dec 2022

  9. Faugère, J.-C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.-P.: Folding alternant and Goppa codes with non-trivial automorphism groups. IEEE Trans. Inf. Theory 62(1), 184–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faugère, J.-C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. Des. Codes Cryptography 79(1), 87–112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14

    Chapter  Google Scholar 

  12. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of compact McEliece’s variants- toward a complexity analysis. In: Conference on Symbolic Computation and Cryptography, p. 45 (2013)

    Google Scholar 

  13. Jabri, A.A.: A statistical decoding algorithm for general linear block codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_1

    Chapter  Google Scholar 

  14. Melchor, C.A., et al.: Hamming quasi-cyclic (HQC) (2020). https://pqc-hqc.org/doc/hqc-specification_2020-10-01.pdf. Accessed 09 Dec 2022

  15. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24

    Chapter  Google Scholar 

  16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16. Elsevier (1977)

    Google Scholar 

  17. Persichetti, E.: Compact McEliece keys based on quasidyadic Srivastava codes. J. Math. Cryptol. 6(2), 149–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boly Seck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seck, B. et al. (2023). Software Implementation of a Code-Based Key Encapsulation Mechanism from Binary QD Generalized Srivastava Codes. In: Deneuville, JC. (eds) Code-Based Cryptography. CBCrypto 2022. Lecture Notes in Computer Science, vol 13839. Springer, Cham. https://doi.org/10.1007/978-3-031-29689-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29689-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29688-8

  • Online ISBN: 978-3-031-29689-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics