Skip to main content

Cryptanalysis of Ivanov–Krouk–Zyablov Cryptosystem

  • Conference paper
  • First Online:
Code-Based Cryptography (CBCrypto 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13839))

Included in the following conference series:

  • 330 Accesses

Abstract

Recently, F. Ivanov, E. Krouk and V. Zyablov proposed new cryptosystem based of Generalized Reed–Solomon (GRS) codes over field extensions. In their approach, the subfield images of GRS codes are masked by a special transform, so that the resulting public codes are not equivalent to subfield images of GRS code but burst errors still can be decoded. In this paper, we show that the complexity of message–recovery attack on this cryptosystem can be reduced due to using burst errors, and the secret key of Ivanov–Krouk–Zyablov cryptosystem can successfully recovered in polynomial time with a linear–algebra based attack and a square–based attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code for our implementation is available on https://github.com/kirill-vedenev/ikz-cryptanalysis.

  2. 2.

    The code for our implementation of this and the next step is available on https://github.com/kirill-vedenev/ikz-cryptanalysis.

References

  1. Aragon, N., et al.: BIKE - Bit-Flipping Key Encapsulation. https://bikesuite.org

  2. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Ouroboros: an efficient and provably secure KEM family. IEEE Trans. Inf. Theory 68, 6233–6244 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced Public Key Security for the McEliece Cryptosystem. J. Cryptol. 29(1), 1–27 (2014). https://doi.org/10.1007/s00145-014-9187-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, T.P., El Amrani, N.: Codes over \(\cal{L}(GF(2)^m,GF(2)^m)\), MDS diffusion matrices and cryptographic applications. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 197–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18681-8_16

    Chapter  MATH  Google Scholar 

  5. Berger, T.P., Gueye, C.T., Klamti, J.B.: Generalized subspace subcodes with application in cryptology. IEEE Trans. Inf. Theory 65, 4641–4657 (2019). https://doi.org/10.1109/TIT.2019.2909872

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35(1), 63–79 (2005). https://doi.org/10.1007/s10623-003-6151-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography. NIST Submissions (2020)

    Google Scholar 

  8. Borodin, M.A., Chizhov, I.V.: Effective attack on the McEliece cryptosystem based on Reed-Muller codes. Discret. Math. Appl. 24(5), 273–280 (2014)

    Article  MATH  Google Scholar 

  9. Couvreur, A., Lequesne, M.: On the security of subspace subcodes of Reed-Solomon codes for public key encryption. IEEE Trans. Inf. Theory 68, 632–648 (2022). https://doi.org/10.1109/TIT.2021.3120440

    Article  MathSciNet  MATH  Google Scholar 

  10. Couvreur, A., Lequesne, M., Tillich, J.-P.: Recovering short secret keys of RLCE in polynomial time. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 133–152. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_8

    Chapter  Google Scholar 

  11. Couvreur, A., Márquez-Corbella, I., Pellikaan, R.: Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes. In: Pinto, R., Malonek, P.R., Vettori, P. (eds.) Coding Theory and Applications. CSMS, vol. 3, pp. 133–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17296-5_13

    Chapter  MATH  Google Scholar 

  12. Couvreur, A., Otmani, A., Tillich, J.-P., Gauthier–Umaña, V.: A Polynomial-Time Attack on the BBCRS Scheme. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 175–193. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_8

    Chapter  Google Scholar 

  13. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41

    Chapter  MATH  Google Scholar 

  14. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  15. Ivanov, F., Krouk, E., Zyablov, V.: New code-based cryptosystem based on binary image of generalized Reed-Solomon code. In: 2021 XVII International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), pp. 66–69. IEEE (2021). https://doi.org/10.1109/REDUNDANCY52534.2021.9606467

  16. Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-geometric codes. Des. Codes Crypt. 8(3), 293–307 (1996). https://doi.org/10.1023/A:1027351723034

    Article  MathSciNet  MATH  Google Scholar 

  17. Khathuria, K., Rosenthal, J., Weger, V.: Encryption scheme based on expanded Reed-Solomon codes. Adv. Math. Commun. 15, 207–218 (2021). https://doi.org/10.3934/amc.2020053

    Article  MathSciNet  MATH  Google Scholar 

  18. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16. Elsevier, Amsterdam (1977)

    MATH  Google Scholar 

  19. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep. 4244, 114–116 (1978)

    Google Scholar 

  20. Melchor, C.A., et al.: Hamming Quasi-Cyclic (HQC). https://pqc-hqc.org

  21. Minder, L., Shokrollahi, A.: Cryptanalysis of the sidelnikov cryptosystem. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_20

    Chapter  Google Scholar 

  22. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr. Inf. Theory 15, 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. Math. Comput. Sci. 3(2), 129–140 (2010). https://doi.org/10.1007/s11786-009-0015-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Overbeck, R.: Structural attacks for public key cryptosystems based on gabidulin codes. J. Cryptol. 21(2), 280–301 (2008). https://doi.org/10.1007/s00145-007-9003-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Sendrier, N.: On the structure of randomly permuted concatenated code. Ph.D. thesis, INRIA (1995)

    Google Scholar 

  26. Sidelnikov, V.M.: A public-key cryptosystem based on binary Reed-Muller codes. Discret. Math. Appl. 4(3), 191–208 (1994)

    Article  MATH  Google Scholar 

  27. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl. 2, 439–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y.: Quantum resistant random linear code based public key encryption scheme RLCE. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 2519–2523. IEEE (2016)

    Google Scholar 

  29. Wieschebrink, C.: Cryptanalysis of the niederreiter public key scheme based on GRS subcodes. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 61–72. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_5

    Chapter  Google Scholar 

  30. Zyablov, V.V., Ivanov, F.I., Krouk, E.A., Sidorenko, V.R.: On new problems in asymmetric cryptography based on error-resistant coding. Probl. Inf. Transm. 58, 184–201 (2022). https://doi.org/10.1134/S0032946022020077

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Vedenev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vedenev, K., Kosolapov, Y. (2023). Cryptanalysis of Ivanov–Krouk–Zyablov Cryptosystem. In: Deneuville, JC. (eds) Code-Based Cryptography. CBCrypto 2022. Lecture Notes in Computer Science, vol 13839. Springer, Cham. https://doi.org/10.1007/978-3-031-29689-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29689-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29688-8

  • Online ISBN: 978-3-031-29689-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics