Skip to main content

Requirement or Not, That is the Question: A Case from the Railway Industry

  • Conference paper
  • First Online:
Requirements Engineering: Foundation for Software Quality (REFSQ 2023)

Abstract

[Context and Motivation] Requirements in tender documents are often mixed with other supporting information. Identifying requirements in large tender documents could aid the bidding process and help estimate the risk associated with the project. [Question/problem] Manual identification of requirements in large documents is a resource-intensive activity that is prone to human error and limits scalability. This study compares various state-of-the-art approaches for requirements identification in an industrial context. For generalizability, we also present an evaluation on a real-world public dataset. [Principal ideas/results] We formulate the requirement identification problem as a binary text classification problem. Various state-of-the-art classifiers based on traditional machine learning, deep learning, and few-shot learning are evaluated for requirements identification based on accuracy, precision, recall, and F1 score. Results from the evaluation show that the transformer-based BERT classifier performs the best, with an average F1 score of 0.82 and 0.87 on industrial and public datasets, respectively. Our results also confirm that few-shot classifiers can achieve comparable results with an average F1 score of 0.76 on significantly lower samples, i.e., only 20% of the data. [Contribution] There is little empirical evidence on the use of large language models and few-shots classifiers for requirements identification. This paper fills this gap by presenting an industrial empirical evaluation of the state-of-the-art approaches for requirements identification in large tender documents. We also provide a running tool and a replication package for further experimentation to support future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Replication package and Tool: https://github.com/a66as/REFSQ2023-ReqORNot.

References

  1. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E., Saadatmand, M., Sundmark, D.: On the relationship between similar requirements and similar software. Requir. Eng. 28, 1–25 (2022)

    Google Scholar 

  2. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., Lindskog, C.: Automated reuse recommendation of product line assets based on natural language requirements. In: Ben Sassi, S., Ducasse, S., Mili, H. (eds.) ICSR 2020. LNCS, vol. 12541, pp. 173–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64694-3_11

    Chapter  Google Scholar 

  3. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated demarcation of requirements in textual specifications: a machine learning-based approach. Empir. Softw. Eng. 25(6), 5454–5497 (2020). https://doi.org/10.1007/s10664-020-09864-1

    Article  Google Scholar 

  4. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Vaz, E.: A machine learning-based approach for demarcating requirements in textual specifications. In: 2019 IEEE 27th International Requirements Engineering Conference (RE), pp. 51–62. IEEE (2019)

    Google Scholar 

  5. Alhoshan, W., Zhao, L., Ferrari, A., Letsholo, K.J.: A zero-shot learning approach to classifying requirements: a preliminary study. In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 52–59. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98464-9_5

    Chapter  Google Scholar 

  6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir. Softw. Eng. 26(6), 1–77 (2021). https://doi.org/10.1007/s10664-021-09986-0

    Article  Google Scholar 

  8. Binkhonain, M., Zhao, L.: A review of machine learning algorithms for identification and classification of non-functional requirements. Expert Syst. Appl. X 1, 100001 (2019)

    Google Scholar 

  9. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  10. Cleland-Huang, J., Vierhauser, M., Bayley, S.: Dronology: an incubator for cyber-physical systems research. In: 2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER), pp. 109–112 (2018)

    Google Scholar 

  11. Dell’Anna, D., Aydemir, F.B., Dalpiaz, F.: Evaluating classifiers in se research: the ecser pipeline and two replication studies. Empir. Softw. Eng. 28(1), 1–40 (2023)

    Article  Google Scholar 

  12. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are “non-functional" requirements really non-functional? an investigation of non-functional requirements in practice. In: 38th International Conference on Software Engineering, pp. 832–842 (2016)

    Google Scholar 

  13. Falkner, A., Palomares, C., Franch, X., Schenner, G., Aznar, P., Schoerghuber, A.: Identifying requirements in requests for proposal: a research preview. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 176–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_13

    Chapter  Google Scholar 

  14. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language requirements processing: a 4D vision. IEEE Softw. 34(6), 28–35 (2017)

    Article  Google Scholar 

  15. Herwanto, G.B., Quirchmayr, G., Tjoa, A.M.: A named entity recognition based approach for privacy requirements engineering. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). IEEE (2021)

    Google Scholar 

  16. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: Norbert: transfer learning for requirements classification. In: 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 169–179. IEEE (2020)

    Google Scholar 

  17. Honnibal, M., Montani, I.: spacy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing. To Appear 7(1), 411–420 (2017)

    Google Scholar 

  18. Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging. arXiv:1508.01991 (2015)

  19. Hubert, M., Rousseeuw, P.: International encyclopedia of statistical science (2010)

    Google Scholar 

  20. Jindal, R., Malhotra, R., Jain, A.: Automated classification of security requirements. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2027–2033. IEEE (2016)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, Lille, vol. 2 (2015)

    Google Scholar 

  23. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)

    Google Scholar 

  24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  25. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019)

  26. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

    Article  Google Scholar 

  27. Saadatmand, M., Enoiu, E.P., Schlingloff, H., Felderer, M., Afzal, W.: Smartdelta: automated quality assurance and optimization in incremental industrial software systems development. In: 25th Euromicro Conference on Digital System Design (DSD) (2022)

    Google Scholar 

  28. Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying requirements from software engineering contracts. In: 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 147–157. IEEE (2020)

    Google Scholar 

  29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv:1910.01108 (2019)

  30. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification? In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI), vol. 11856, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32381-3_16

    Chapter  Google Scholar 

  31. Tunstall, L., et al.: Efficient few-shot learning without prompts. arXiv:2209.11055 (2022)

  32. Varenov, V., Gabdrahmanov, A.: Security requirements classification into groups using nlp transformers. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp. 444–450. IEEE (2021)

    Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 1–11 (2017)

    Google Scholar 

  34. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: deep self-attention distillation for task-agnostic compression of pre-trained transformers. Adv. Neural Inf. Process. Syst. 33, 5776–5788 (2020)

    Google Scholar 

  35. Winkler, J., Vogelsang, A.: Automatic classification of requirements based on convolutional neural networks. In: 2016 IEEE 24th International Requirements Engineering Conference Workshops (REW), pp. 39–45. IEEE (2016)

    Google Scholar 

  36. Winkler, J.P., Grönberg, J., Vogelsang, A.: Optimizing for recall in automatic requirements classification: An empirical study. In: 2019 IEEE 27th International Requirements Engineering Conference (RE), pp. 40–50. IEEE (2019)

    Google Scholar 

  37. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  38. Zhang, T., Wu, F., Katiyar, A., Weinberger, K.Q., Artzi, Y.: Revisiting few-sample bert fine-tuning. arXiv preprint arXiv:2006.05987 (2020)

  39. Zhao, L., et al.: Natural language processing for requirements engineering: a systematic mapping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially funded by the AIDOaRt (KDT) and SmartDelta [27] (ITEA) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bashir, S., Abbas, M., Saadatmand, M., Enoiu, E.P., Bohlin, M., Lindberg, P. (2023). Requirement or Not, That is the Question: A Case from the Railway Industry. In: Ferrari, A., Penzenstadler, B. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2023. Lecture Notes in Computer Science, vol 13975. Springer, Cham. https://doi.org/10.1007/978-3-031-29786-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29786-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29785-4

  • Online ISBN: 978-3-031-29786-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics