Skip to main content

A Systematic Comparison on Prevailing Intrusion Detection Models

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13798))

Abstract

Modern vehicles have become connected via On-Board Units (OBUs) involving many complex embedded and networked devices with steadily increasing processing and communication resources. Those devices exchange information through intra-vehicle networks to implement various functionalities and perform actions. Vehicles’ connectivity has also been extended to external networks through vehicle-to-everything technologies, enabling communications with other vehicles, infrastructures, and smart devices. In parallel to the significant increase in quality of service, the connectivity of modern vehicles raises their vulnerabilities to cyber-attacks targeting both intra-vehicle and external networks. To secure communications in vehicular networks, there has been a consistent effort to develop intrusion detection systems based on machine learning techniques to detect and ultimately react to malicious cyber-attacks. In this article, we study several machine learning algorithms, deep learning models, and hyper-parameter optimization techniques to detect vulnerability attacks on vehicular networks. Experimental results on well-known data sets such as CICIDS2017, NSL-KDD, IoTID20, KDDCup99, and UNSW-NB15 indicate that learning-based algorithms can detect various types of intrusion detection attacks with significant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkahtani, H., Aldhyani, T.H.: Intrusion detection system to advance internet of things infrastructure-based deep learning algorithms. Complexity 2021 (2021)

    Google Scholar 

  2. Aloqaily, M., Otoum, S., Al Ridhawi, I., Jararweh, Y.: An intrusion detection system for connected vehicles in smart cities. Ad Hoc Netw. 90, 101842 (2019)

    Google Scholar 

  3. Alshammari, A., Zohdy, M.A., Debnath, D., Corser, G.: Classification approach for intrusion detection in vehicle systems. Wirel. Eng. Technol. 9(4), 79–94 (2018)

    Article  Google Scholar 

  4. Aswal, K., Dobhal, D.C., Pathak, H.: Comparative analysis of machine learning algorithms for identification of bot attack on the internet of vehicles (IoV). In: 2020 International Conference on Inventive Computation Technologies (ICICT), pp. 312–317. IEEE (2020)

    Google Scholar 

  5. Bala, R., Nagpal, R.: A review on KDD CUP99 and NSL NSL-KDD dataset. Int. J. Adv. Res. Comput. Sci. 10(2) (2019)

    Google Scholar 

  6. Basati, A., Faghih, M.M.: DFE: efficient IoT network intrusion detection using deep feature extraction. Neural Comput. Appl. 1–21 (2022)

    Google Scholar 

  7. Diallo, E.H., Dib, O., Agha, K.A.: The journey of blockchain inclusion in vehicular networks: a taxonomy. In: 2021 Third International Conference on Blockchain Computing and Applications (BCCA), pp. 135–142 (2021). https://doi.org/10.1109/BCCA53669.2021.9657050

  8. Diallo, EH., Dib, O., Al Agha, K.: A blockchain-based approach to track traffic messages in vehicular networks. In: Gupta, G., Wang, L., Yadav, A., Rana, P., Wang, Z. (eds.) Proceedings of Academia-Industry Consortium for Data Science. AISC, vol. 1411, pp. 345–362. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6887-6_28

  9. Eggensperger, K., et al.: Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In: NIPS workshop on Bayesian Optimization in Theory and Practice, vol. 10 (2013)

    Google Scholar 

  10. Eggensperger, K., Hutter, F., Hoos, H., Leyton-Brown, K.: Efficient benchmarking of hyperparameter optimizers via surrogates. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  11. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: International Conference on Machine Learning, pp. 1437–1446. PMLR (2018)

    Google Scholar 

  12. Gao, Y., Wu, H., Song, B., Jin, Y., Luo, X., Zeng, X.: A distributed network intrusion detection system for distributed denial of service attacks in vehicular ad hoc network. IEEE Access 7, 154560–154571 (2019)

    Article  Google Scholar 

  13. Hacking, Lab, C.R.: Can intrusion dataset (2017). http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

  14. Injadat, M., Moubayed, A., Nassif, A.B., Shami, A.: Multi-stage optimized machine learning framework for network intrusion detection. IEEE Trans. Netw. Serv. Manag. 18(2), 1803–1816 (2020)

    Article  Google Scholar 

  15. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA off-line intrusion detection evaluation. Comput. Netw. 34(4), 579–595 (2000). https://doi.org/10.1016/S1389-1286(00)00139-0

    Article  Google Scholar 

  16. Nan, Z., Wang, X., Dib, O.: Metaheuristic enhancement with identified elite genes by machine learning. In: Chen, J., Hashimoto, T., Tang, X., Wu, J. (eds.) Knowledge and Systems Sciences. KSS 2022. CCIS, vol. 1592, pp. 34–49. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-3610-4_3

  17. Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M., Aydin, N.: Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: a bioinformatics study on biomedical and biological cases. Comput. Biol. Chem. 97, 107619 (2022)

    Google Scholar 

  18. Nour, M., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: IEEE Military Communications and Information Systems Conference (MilCIS), pp. 1–6 (2015)

    Google Scholar 

  19. Panigrahi, R., Borah, S.: A detailed analysis of cicids2017 dataset for designing intrusion detection systems. Int. J. Eng. Technol. 7(3.24), 479–482 (2018)

    Google Scholar 

  20. Rashid, M., Kamruzzaman, J., Imam, T., Wibowo, S., Gordon, S.: A tree-based stacking ensemble technique with feature selection for network intrusion detection. Appl. Intell. 1–14 (2022)

    Google Scholar 

  21. Senliol, B., Gulgezen, G., Yu, L., Cataltepe, Z.: Fast correlation based filter (FCBF) with a different search strategy. In: 2008 23rd International Symposium on Computer and Information Sciences, pp. 1–4 (2008). https://doi.org/10.1109/ISCIS.2008.4717949

  22. Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.A.: A detailed analysis of the CICIDS2017 data set. In: Mori, P., Furnell, S., Camp, O. (eds.) Information Systems Security and Privacy. ICISSP 2018. CCIS, vol. 977, pp. 172–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25109-3_9

  23. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp 1, 108–116 (2018)

    Google Scholar 

  24. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. IEEE (2009)

    Google Scholar 

  25. Thakkar, A., Lohiya, R.: A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Artif. Intell. Rev. 1–111 (2021)

    Google Scholar 

  26. Ullah, I., Mahmoud, Q.H.: A scheme for generating a dataset for anomalous activity detection in IoT networks. In: Goutte, C., Zhu, X. (eds.) Advances in Artificial Intelligence. Canadian AI 2020. LNCS, vol. 12109, pp. 508–520. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_52

  27. Ullah, I., Mahmoud, Q.H.: Design and development of a deep learning-based model for anomaly detection in iot networks. IEEE Access 9, 103906–103926 (2021)

    Article  Google Scholar 

  28. Yang, L., Moubayed, A., Shami, A.: MTH-IDS: a multitiered hybrid intrusion detection system for internet of vehicles. IEEE Internet Things J. 9(1), 616–632 (2021)

    Article  Google Scholar 

  29. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020)

    Article  Google Scholar 

  30. Yang, L., Shami, A.: A transfer learning and optimized CNN based intrusion detection system for internet of vehicles. arXiv preprint arXiv:2201.11812 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Dib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Xue, H., Wang, J., Hong, S., Fu, H., Dib, O. (2023). A Systematic Comparison on Prevailing Intrusion Detection Models. In: Takizawa, H., Shen, H., Hanawa, T., Hyuk Park, J., Tian, H., Egawa, R. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2022. Lecture Notes in Computer Science, vol 13798. Springer, Cham. https://doi.org/10.1007/978-3-031-29927-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29927-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29926-1

  • Online ISBN: 978-3-031-29927-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics