Skip to main content

Enhancing Resolution of Inferring Hi-C Data Integrating U-Net and ResNet Networks

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13798))

  • 480 Accesses

Abstract

The Hi-C data is the basis of three-dimensional chromosome structure reconstruction. In this paper, a method integrating U-Net and ResNET network is proposed to infer high resolution Hi-C data from existing low-resolution Hi-C data. Firstly, the U-Net is used as the backbone network to make full use of the shallow layer details and deep layer essential features of Hi-C data. Secondly, the residual module is introduced into the coding path and decoding path of the network to increase the depth of the model and prevent network degradation. Finally, the down sampling is used to reduce the calculation amount to decrease the required running time for the network model. The experimental results on real datasets showed that the proposed method had better performance than existing methods, and the inferred high resolution Hi-C data was closer to the real Hi-C data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armingol, E., Officer, A., Harismendy, O., et al.: Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22(2), 71–88 (2021)

    Article  Google Scholar 

  2. Cao, C., Hong, P., Huang, X., et al.: HPV-CCDC106 integration alters local chromosome architecture and hijacks an enhancer by three-dimensional genome structure remodeling in cervical cancer. J. Genet. Genomics 47(8), 437–450 (2020)

    Article  Google Scholar 

  3. Oluwadare, O., Highsmith, M., Cheng, J.: An overview of methods for reconstructing 3-D chromosome and genome structures from Hi-C data. Biol. Proced. Online 21, 7 (2019)

    Article  Google Scholar 

  4. Zheng, X., Zheng, Y.: CscoreTool: fast Hi-C compartment analysis at high resolution. Bioinformatics 34(9), 1568–1570 (2018)

    Article  Google Scholar 

  5. Szabo, Q., Bantignies, F., Cavalli, G.: Principles of genome folding into topologically associating domains. Sci. Adv. 5(4), eaaw1668 (2019)

    Article  Google Scholar 

  6. Grubert, F., Srivas, R., Spacek, D.V., et al.: Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583(7818), 737–743 (2020)

    Article  Google Scholar 

  7. Eagen, K.P.: Principles of chromosome architecture revealed by Hi-C. Trends Biochem. Sci. 43(6), 469–478 (2018)

    Article  Google Scholar 

  8. Rao, S.S.P., Huntley, M.H., Durand, N.C., et al.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7), 1665–1680 (2014)

    Article  Google Scholar 

  9. Zhang, Y., An, L., Xu, J., et al.: Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat. Commun. 9(1), 750 (2018)

    Article  Google Scholar 

  10. Carron, L., Morlot, J.B., Matthys, V., et al.: Boost-HiC: computational enhancement of long-range contacts in chromosomal contact maps. Bioinformatics 35(16), 2724–2729 (2019)

    Article  Google Scholar 

  11. Liu, T., Wang, Z.: HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data. Bioinformatics 35(21), 4222–4228 (2019)

    Article  Google Scholar 

  12. Liu, Q., Lv, H., Jiang, R.: hicGAN infers super resolution Hi-C data with generative adversarial networks. Bioinformatics 35(14), i99–i107 (2019)

    Article  Google Scholar 

  13. Creswell, A., White, T., Dumoulin, V., et al.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  14. Hong, H., Jiang, S., Li, H., et al.: DeepHiC: a generative adversarial network for enhancing Hi-C data resolution. PLoS Comput. Biol. 16(2), e1007287 (2020)

    Article  Google Scholar 

  15. Dimmick, M.: HiCSR: a Hi-C Super-Resolution Framework for Producing Highly Realistic Contact Maps. University of Toronto, Toronto (2020)

    Google Scholar 

  16. Li, Z., Dai, Z.: SRHiC: a deep learning model to enhance the resolution of Hi-C data. Front. Genet. 11, 353 (2020)

    Article  Google Scholar 

  17. Highsmith, M., Cheng, J.: VEHiCLE: a variationally encoded Hi-C loss enhancement algorithm for improving and generating Hi-C data. Sci. Rep. 11(1), 8880 (2021)

    Article  Google Scholar 

  18. Kong, S., Zhang, Y.: Deciphering Hi-C: from 3D genome to function. Cell Biol. Toxicol. 35(1), 15–32 (2019). https://doi.org/10.1007/s10565-018-09456-2

    Article  MathSciNet  Google Scholar 

  19. Raskutti, G., Wainwright, M.J., Yu, B.: Early stopping and non-parametric regression: an optimal data-dependent stopping rule. J. Mach. Learn. Res. 15(1), 335–366 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Proceedings of 2015 International Conference on Medical Image Computing and Computer-assisted Intervention, pp.234–241 (2015) https://doi.org/10.1007/978-3-319-24574-4_28

  21. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp.770–778 (2016)

    Google Scholar 

  22. Asuero, A.G., Sayago, A., Gonzalez, A.: The correlation coefficient: an overview. Crit. Rev. Anal. Chem. 36(1), 41–59 (2006)

    Article  Google Scholar 

  23. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-arguments against avoiding RMSE in the literature. Geoscientific Model Develop. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  24. Cai, N.: Study and Application of Convolution Kernel Weight Initialization Method in Convolution Neural Network (in Chinese). Ningxia University, Yinchun (2019)

    Google Scholar 

  25. Li, X., Orabona, F.: On the convergence of stochastic gradient descent with adaptive stepsizes. In: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, Naha, Okinawa, Japan. PMLR, vol. 89, pp. 983–992 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61962004, and the Innovation Project of Guangxi Graduate Education (No.YCSW2021020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, F., Li, N., Zhong, C. (2023). Enhancing Resolution of Inferring Hi-C Data Integrating U-Net and ResNet Networks. In: Takizawa, H., Shen, H., Hanawa, T., Hyuk Park, J., Tian, H., Egawa, R. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2022. Lecture Notes in Computer Science, vol 13798. Springer, Cham. https://doi.org/10.1007/978-3-031-29927-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29927-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29926-1

  • Online ISBN: 978-3-031-29927-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics