Skip to main content

Broad Learning Inference Based on Fully Homomorphic Encryption

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)

Abstract

Distributed big data computing environments such as machine learning are widely deployed and applied on the cloud. However, since cloud servers can easily access user data, it leads to serious data leakage problems. As a potential technology, Fully Homomorphic Encryption (FHE) is often used in the field of privacy-preserving machine learning. However, in order to reduce the multiplicative depth of FHE, the neural network prunes the number of network layers, resulting in low inference accuracy. A learning model named Broad Learning System (BLS) has the characteristics of shallow model depth and low complexity. Based on this mode, we propose a privacy-preserving inference algorithm with low multiplicative depth, namely broad learning inference based on fully homomorphic encryption. We also extend the algorithm to the BLS model with incremental learning. We implement the privacy-preserving BLS for the first time using TENSEAL’s CKKS scheme, and also verify the effectiveness of BLS inference with incremental learning. Experimental evaluations demonstrate the inference accuracy of 0.928 and 0.672 for datasets of MNIST and NORB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://github.com/OpenMined/TenSEAL

  2. Al Badawi, A., et al.: Towards the AlexNet moment for homomorphic encryption: HCNN, the first homomorphic CNN on encrypted data with GPUs. arXiv e-prints pp. arXiv-1811 (2018)

    Google Scholar 

  3. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_23

    Chapter  Google Scholar 

  4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. Cryptology ePrint Archive (2014)

    Google Scholar 

  5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 1–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brutzkus, A., Gilad-Bachrach, R., Elisha, O.: Low latency privacy preserving inference. In: International Conference on Machine Learning, pp. 812–821. PMLR (2019)

    Google Scholar 

  8. Chabanne, H., De Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. Cryptology ePrint Archive (2017)

    Google Scholar 

  9. Chen, C.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate homomorphic encryption. In: Cid, C., Jacobson, Jr., M. (eds.) Selected Areas in Cryptography (SAC 2018). LNCS, vol. 11349, pp. 347–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_16

  11. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive (2012)

    Google Scholar 

  13. Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)

    Google Scholar 

  14. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210. PMLR (2016)

    Google Scholar 

  15. Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data. arXiv preprint arXiv:1711.05189 (2017)

  16. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  17. Ishiyama, T., Suzuki, T., Yamana, H.: Highly accurate CNN inference using approximate activation functions over homomorphic encryption. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3989–3995. IEEE (2020)

    Google Scholar 

  18. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  19. Yuan, X., Chen, J., Zhang, N., Fang, X., Liu, D.: A federated bidirectional connection broad learning scheme for secure data sharing in internet of vehicles. China Commun. 18(7), 117–133 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Key-Area Research and Development Program of Guangdong Province (No. 2020B010164003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingpeng Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, X., Sang, Y., Li, Z. (2023). Broad Learning Inference Based on Fully Homomorphic Encryption. In: Takizawa, H., Shen, H., Hanawa, T., Hyuk Park, J., Tian, H., Egawa, R. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2022. Lecture Notes in Computer Science, vol 13798. Springer, Cham. https://doi.org/10.1007/978-3-031-29927-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29927-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29926-1

  • Online ISBN: 978-3-031-29927-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics