Skip to main content

Chordal Embeddings Based on Topology of the Tonal Space

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2023)

Abstract

In the classical western musical tradition, the mutual simultaneous appearance of two tones in a melody is determined by harmony, i.e. the ratio of their frequencies. To perform NLP-based methods for MIDI file analysis, one needs to construct vector embeddings of chords, taking mutual harmonicity into account. Previous works utilising this idea were based on the notion of Euler’s Tonnetz. Being a beautiful topological model describing consonance relations in music, the classical Tonnetz has a certain disadvantage in that it forgets particular octaves. In this paper, we introduce the mathematical generalisation of Tonnetz taking octaves into account. Based on this model, we introduce several types of metrics on chords and use them to construct chordal embeddings. These embeddings are tested on two types of tasks: the chord estimation task, based on the Harmony Transformer model, and the music generation task, provided on the basis of TonicNet.

The work of A. Ayzenberg, M. Beketov, G. Magai, and K. Sorokin was supported by the HSE University Basic Research Program. A. Burashnikova was supported by the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, H., Niu, Y., Fu, D., Wang, H.: MusicBERT: a self-supervised learning of music representation. In: Proceedings of the 29th ACM International Conference on Multimedia, MM 2021, New York, NY, USA, pp. 3955–3963. Association for Computing Machinery (2021)

    Google Scholar 

  2. Aminian, M., Kehoe, E., Ma, X., Peterson, A., Kirby, M.: Exploring musical structure using tonnetz lattice geometry and LSTMs. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 414–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_31

    Chapter  Google Scholar 

  3. Chou, Y.-H., Chen, I.-C., Chang, C.-J., Ching, J., Yang, Y.-H.: MidiBERT-piano: large-scale pre-training for symbolic music understanding. ArXiv, vol. abs/2107.05223 (2021)

    Google Scholar 

  4. Prang, M., Esling, P.: Signal-domain representation of symbolic music for learning embedding spaces. ArXiv, vol. abs/2109.03454 (2021)

    Google Scholar 

  5. Zhang, Y., Jin, R., Zhou, Z.-H.: Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybernet. 1, 43–52 (2010)

    Article  Google Scholar 

  6. Chuan, C.-H., Agres, K., Herremans, D.: From context to concept: exploring semantic relationships in music with word2vec. Neural Comput. Appl. 32(4), 1023–1036 (2018). https://doi.org/10.1007/s00521-018-3923-1

    Article  Google Scholar 

  7. Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tymoczko, D.: The generalized Tonnetz. J. Music Theory 56, 1–52 (2012)

    Article  Google Scholar 

  9. Budney, R., Sethares, W.A.: Topology of musical data. J. Math. Music 8, 73–92 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Papadopoulos, A.: Mathematics and group theory in music. In: Handbook of Group Actions, vol. II Ji, L., Papadopoulos, A., Yau, S.-T., vol. 32 of Advanced Lectures in Mathematics, pp. 525–572, International Press and Higher Education Press (2015)

    Google Scholar 

  11. Freund, A., Andreatta, M., Giavitto, J.-L.: Lattice-based and topological representations of binary relations with an application to music. In: Annals of Mathematics and Artificial Intelligence, vol. 73, pp. 311–334 (2014)

    Google Scholar 

  12. Euler, L.: Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae. Saint Petersburg: Saint Petersburg Academy (1739)

    Google Scholar 

  13. Cohn, R.: Introduction to neo-Riemannian theory: a survey and a historical perspective. J. Music Theory 42, 167 (1998)

    Article  Google Scholar 

  14. Gollin, E.: Some aspects of three-dimensional “onnetze’’. J. Music Theory 42, 195 (1998)

    Article  Google Scholar 

  15. Bigo, L., Andreatta, M.: Topological structures in computer-aided music analysis. In: Computational Music Analysis, pp. 57–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25931-4_3

    Chapter  MATH  Google Scholar 

  16. Karystinaios, E., Guichaoua, C., Andreatta, M., Bigo, L., Bloch, I.: Musical genre descriptor for classification based on Tonnetz trajectories. Journées d’Informatique Musicale, (Strasbourg, France), October 2020

    Google Scholar 

  17. Bigo, L., Ghisi, D., Spicher, A., Andreatta, M.: Representation of musical structures and processes in simplicial chord spaces. Comput. Music J. 39, 9–24 (2015)

    Article  Google Scholar 

  18. Bergomi, M.G., Baratè, A., Di Fabio, B.: Towards a topological fingerprint of music. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 88–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1_9

    Chapter  Google Scholar 

  19. Bergomi, M.G., Baratè, A.: Homological persistence in time series: an application to music classification. J. Math. Music 14, 204–221 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jevti’c, F.D., Živaljević, R.T.: Generalized Tonnetz and discrete Abel-Jacobi map. Topological Methods in Nonlinear Analysis, p. 1 (2021)

    Google Scholar 

  21. Oleynikov, R., Linkova, M.: Music theory. Feniks, Visual representation of harmony. Rostov-on-Don (2021)

    Google Scholar 

  22. Peracha, O.: Improving polyphonic music models with feature-rich encoding, ArXiv, vol. abs/1911.11775 (2020)

    Google Scholar 

  23. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. AMS (2010)

    Google Scholar 

  25. Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discrete Comput. Geometry 33, 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fujita, O.: Metrics based on average distance between sets. Jpn. J. Ind. Appl. Math. 30, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Skopenkov, A.: Embedding and knotting of manifolds in Euclidean spaces. In: Surveys in Contemporary Mathematics, London Math. Soc. Lect. Notes, vol. 347, pp. 248–342 (2008)

    Google Scholar 

  29. Tompkins, C.: Isometric embedding of flat manifolds in Euclidean space. Duke Math. J. 5, 58–61 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nash, J.F.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pinkall, U.: Hopf tori in \({S}^3\). Inventiones Mathematicae 81, 379–386 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, T.-P., Su, L.: Harmony transformer: incorporating chord segmentation into harmony recognition. In: Proceedings of the 20th International Society for Music Information Retrieval Conference, Delft, The Netherlands, pp. 259–267, ISMIR, November 2019

    Google Scholar 

  33. Burgoyne, J.A., Wild, J., Fujinaga, I.: An expert ground truth set for audio chord recognition and music analysis. In: Proceedings of the 12th International Society for Music Information Retrieval Conference, (Miami, United States), pp. 633–638, ISMIR, October 2011

    Google Scholar 

  34. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription, arXiv preprint arXiv:1206.6392 (2012)

  35. Cífka, O., Şimşekli, U., Richard, G.: Groove2Groove: one-shot music style transfer with supervision from synthetic data. IEEE/ACM Trans. Audio Speech Language Process. 28, 2638–2650 (2020)

    Article  Google Scholar 

  36. Chen, T.-P., Su, L.: Attend to chords: improving harmonic analysis of symbolic music using transformer-based models. Trans. Int. Soc. Music Inf. Retrieval 4, 1–13 (2021)

    Article  Google Scholar 

  37. Dhariwal, P., Jun, H., Payne, C., Kim, J.W., Radford, A., Sutskever, I.: Jukebox: a generative model for music. arXiv preprint arXiv:2005.00341 (2020)

  38. Payne, C.: MuseNet. OpenAI blog (2019). https://openai.com/blog/musenet. Accessed 10 Nov 2022

  39. Sorokin, K., Ayzenberg, A., Beketov, M.: Python source code for melody transformations based on homeomorphisms of the tonal space. GitHub (2023). https://github.com/mopsless/style-transfer. Accessed 01 Feb 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Ayzenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayzenberg, A. et al. (2023). Chordal Embeddings Based on Topology of the Tonal Space. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29956-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29955-1

  • Online ISBN: 978-3-031-29956-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics