Abstract
In the classical western musical tradition, the mutual simultaneous appearance of two tones in a melody is determined by harmony, i.e. the ratio of their frequencies. To perform NLP-based methods for MIDI file analysis, one needs to construct vector embeddings of chords, taking mutual harmonicity into account. Previous works utilising this idea were based on the notion of Euler’s Tonnetz. Being a beautiful topological model describing consonance relations in music, the classical Tonnetz has a certain disadvantage in that it forgets particular octaves. In this paper, we introduce the mathematical generalisation of Tonnetz taking octaves into account. Based on this model, we introduce several types of metrics on chords and use them to construct chordal embeddings. These embeddings are tested on two types of tasks: the chord estimation task, based on the Harmony Transformer model, and the music generation task, provided on the basis of TonicNet.
The work of A. Ayzenberg, M. Beketov, G. Magai, and K. Sorokin was supported by the HSE University Basic Research Program. A. Burashnikova was supported by the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhu, H., Niu, Y., Fu, D., Wang, H.: MusicBERT: a self-supervised learning of music representation. In: Proceedings of the 29th ACM International Conference on Multimedia, MM 2021, New York, NY, USA, pp. 3955–3963. Association for Computing Machinery (2021)
Aminian, M., Kehoe, E., Ma, X., Peterson, A., Kirby, M.: Exploring musical structure using tonnetz lattice geometry and LSTMs. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 414–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_31
Chou, Y.-H., Chen, I.-C., Chang, C.-J., Ching, J., Yang, Y.-H.: MidiBERT-piano: large-scale pre-training for symbolic music understanding. ArXiv, vol. abs/2107.05223 (2021)
Prang, M., Esling, P.: Signal-domain representation of symbolic music for learning embedding spaces. ArXiv, vol. abs/2109.03454 (2021)
Zhang, Y., Jin, R., Zhou, Z.-H.: Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybernet. 1, 43–52 (2010)
Chuan, C.-H., Agres, K., Herremans, D.: From context to concept: exploring semantic relationships in music with word2vec. Neural Comput. Appl. 32(4), 1023–1036 (2018). https://doi.org/10.1007/s00521-018-3923-1
Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006)
Tymoczko, D.: The generalized Tonnetz. J. Music Theory 56, 1–52 (2012)
Budney, R., Sethares, W.A.: Topology of musical data. J. Math. Music 8, 73–92 (2013)
Papadopoulos, A.: Mathematics and group theory in music. In: Handbook of Group Actions, vol. II Ji, L., Papadopoulos, A., Yau, S.-T., vol. 32 of Advanced Lectures in Mathematics, pp. 525–572, International Press and Higher Education Press (2015)
Freund, A., Andreatta, M., Giavitto, J.-L.: Lattice-based and topological representations of binary relations with an application to music. In: Annals of Mathematics and Artificial Intelligence, vol. 73, pp. 311–334 (2014)
Euler, L.: Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae. Saint Petersburg: Saint Petersburg Academy (1739)
Cohn, R.: Introduction to neo-Riemannian theory: a survey and a historical perspective. J. Music Theory 42, 167 (1998)
Gollin, E.: Some aspects of three-dimensional “onnetze’’. J. Music Theory 42, 195 (1998)
Bigo, L., Andreatta, M.: Topological structures in computer-aided music analysis. In: Computational Music Analysis, pp. 57–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25931-4_3
Karystinaios, E., Guichaoua, C., Andreatta, M., Bigo, L., Bloch, I.: Musical genre descriptor for classification based on Tonnetz trajectories. Journées d’Informatique Musicale, (Strasbourg, France), October 2020
Bigo, L., Ghisi, D., Spicher, A., Andreatta, M.: Representation of musical structures and processes in simplicial chord spaces. Comput. Music J. 39, 9–24 (2015)
Bergomi, M.G., Baratè, A., Di Fabio, B.: Towards a topological fingerprint of music. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 88–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1_9
Bergomi, M.G., Baratè, A.: Homological persistence in time series: an application to music classification. J. Math. Music 14, 204–221 (2020)
Jevti’c, F.D., Živaljević, R.T.: Generalized Tonnetz and discrete Abel-Jacobi map. Topological Methods in Nonlinear Analysis, p. 1 (2021)
Oleynikov, R., Linkova, M.: Music theory. Feniks, Visual representation of harmony. Rostov-on-Don (2021)
Peracha, O.: Improving polyphonic music models with feature-rich encoding, ArXiv, vol. abs/1911.11775 (2020)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2000)
Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. AMS (2010)
Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discrete Comput. Geometry 33, 249–274 (2005)
Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)
Fujita, O.: Metrics based on average distance between sets. Jpn. J. Ind. Appl. Math. 30, 1–19 (2011)
Skopenkov, A.: Embedding and knotting of manifolds in Euclidean spaces. In: Surveys in Contemporary Mathematics, London Math. Soc. Lect. Notes, vol. 347, pp. 248–342 (2008)
Tompkins, C.: Isometric embedding of flat manifolds in Euclidean space. Duke Math. J. 5, 58–61 (1939)
Nash, J.F.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)
Pinkall, U.: Hopf tori in \({S}^3\). Inventiones Mathematicae 81, 379–386 (1985)
Chen, T.-P., Su, L.: Harmony transformer: incorporating chord segmentation into harmony recognition. In: Proceedings of the 20th International Society for Music Information Retrieval Conference, Delft, The Netherlands, pp. 259–267, ISMIR, November 2019
Burgoyne, J.A., Wild, J., Fujinaga, I.: An expert ground truth set for audio chord recognition and music analysis. In: Proceedings of the 12th International Society for Music Information Retrieval Conference, (Miami, United States), pp. 633–638, ISMIR, October 2011
Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription, arXiv preprint arXiv:1206.6392 (2012)
Cífka, O., Şimşekli, U., Richard, G.: Groove2Groove: one-shot music style transfer with supervision from synthetic data. IEEE/ACM Trans. Audio Speech Language Process. 28, 2638–2650 (2020)
Chen, T.-P., Su, L.: Attend to chords: improving harmonic analysis of symbolic music using transformer-based models. Trans. Int. Soc. Music Inf. Retrieval 4, 1–13 (2021)
Dhariwal, P., Jun, H., Payne, C., Kim, J.W., Radford, A., Sutskever, I.: Jukebox: a generative model for music. arXiv preprint arXiv:2005.00341 (2020)
Payne, C.: MuseNet. OpenAI blog (2019). https://openai.com/blog/musenet. Accessed 10 Nov 2022
Sorokin, K., Ayzenberg, A., Beketov, M.: Python source code for melody transformations based on homeomorphisms of the tonal space. GitHub (2023). https://github.com/mopsless/style-transfer. Accessed 01 Feb 2023
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ayzenberg, A. et al. (2023). Chordal Embeddings Based on Topology of the Tonal Space. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-29956-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29955-1
Online ISBN: 978-3-031-29956-8
eBook Packages: Computer ScienceComputer Science (R0)