Abstract
Symmetry is a universal concept, its unique importance has made it a topic of research across many different fields. It is often considered as a constant where higher levels of symmetry are preferred in the judgement of faces and even the initial state of the universe is thought to have been in pure symmetry. The same is true in the judgement of auto-generated art, with symmetry often used alongside complexity to generate aesthetically pleasing images; however, these are two of many different aspects contributing to aesthetic judgement, each one of these aspects is also influenced by other aspects, for example, art expertise. These intricacies cause multiple problems such as making it difficult to describe aesthetic preferences and to auto-generate artwork using a high number of these aspects. In this paper, a gamified approach is presented which is used to elicit the preferences of symmetry levels for individuals and further understand how symmetry can be utilised within the context of automatically generating artwork. The gamified approach is implemented within an experiment with participants aged between 13 and 60, providing evidence that symmetry should be kept consistent within an evolutionary art context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://www.oculus.com/experiences/quest/3429965927112413.
References
Acebo, E., Sbert, M.: Benford’s law for natural and synthetic images. In: First Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging (2005)
Alamino, R.C.: Measuring complexity through average symmetry. J. Phys. A: Math. Theoret. 48(27), 275101 (2015)
Bauerly, M., Liu, Y.: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics. Int. J. Hum Comput Stud. 64(8), 670–682 (2006)
Bergen, S., Ross, B.J.: Aesthetic 3D model evolution. Genet. Program Evolvable Mach. 14(3), 339–367 (2013)
Bertamini, M., Silvanto, J., Norcia, A.M., Makin, A.D., Wagemans, J.: The neural basis of visual symmetry and its role in mid-and high-level visual processing. Ann. N. Y. Acad. Sci. 1426(1), 111–126 (2018)
Birkhoff, G.D.: Aesthetic measure. Mass, Cambridge (1933)
Chatterjee, A., Widick, P., Sternschein, R., Smith, W.B., Bromberger, B.: The assessment of art attributes. Empir. Stud. Arts 28(2), 207–222 (2010)
Colton, S.: Creativity versus the perception of creativity in computational systems. In: AAAI spring symposium: creative intelligent systems. vol. 8, p. 7. Palo Alto, CA (2008)
Easton, E., Ekárt, A., Bernardet, U.: Axial generation: Mixing colour and shapes to automatically form diverse digital sculptures. SN Comput. Sci. 3(6), 1–17 (2022)
Ecins, A., Fermuller, C., Aloimonos, Y.: Detecting reflectional symmetries in 3d data through symmetrical fitting. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1779–1783 (2017)
Ekárt, A., Sharma, D., Chalakov, S.: Modelling human preference in evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 303–312. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_31
den Heijer, E.: Evolving art using measures for symmetry, compositional balance and liveliness. In: International Conference on Evolutionary Computation Theory and Applications. vol. 2, pp. 52–61. SciTePress (2012)
den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_32
Isik, A.I., Vessel, E.A.: Continuous ratings of movie watching reveal idiosyncratic dynamics of aesthetic enjoyment. PLoS ONE 14(10), e0223896 (2019)
Jones, B.C., DeBruine, L.M., Little, A.C.: The role of symmetry in attraction to average faces. Perception Psychophys. 69(8), 1273–1277 (2007)
Leder, H., Tinio, P.P., Brieber, D., Kröner, T., Jacobsen, T., Rosenberg, R.: Symmetry is not a universal law of beauty. Empir. Stud. Arts 37(1), 104–114 (2019)
Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998). https://doi.org/10.1007/10692710_23
Matkovic, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor-a new approach to image contrast. Comput. Aesthetics 2005, 159–168 (2005)
McDermott, J., et al.: String-rewriting grammars for evolutionary architectural design. Environ. Plann. B. Plann. Des. 39(4), 713–731 (2012)
Nadal, M., Chatterjee, A.: Neuroaesthetics and art’s diversity and universality. Wiley Interdisciplinary Rev. Cogn. Sci. 10(3), e1487 (2019)
Osborne, H.: Symmetry as an aesthetic factor. Comput. Math. Appl. 12(1–2), 77–82 (1986)
O’Reilly, U.M., Hemberg, M.: Integrating generative growth and evolutionary computation for form exploration. Genet. Program Evolvable Mach. 8(2), 163–186 (2007)
Pelowski, M.: Tears and transformation: feeling like crying as an indicator of insightful or “aesthetic’’ experience with art. Front. Psychol. 6, 1006 (2015)
Rhodes, G.: The evolution of facial attractiveness. Annu. Rev. Psychol. 57, 199–226 (2006)
al-Rifaie, M.M., Ursyn, A., Zimmer, R., Javid, M.A.J.: On symmetry, aesthetics and quantifying symmetrical complexity. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_2
Rigau, J., Feixas, M., Sbert, M.: Conceptualizing Birkhoff’s aesthetic measure using Shannon entropy and Kolmogorov complexity. In: Computational Aesthetics, pp. 105–112 (2007)
Rodrigues, A., Cardoso, A., Machado, P.: Generation of aesthetic emotions guided by perceptual features (2018)
Ross, B., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: IEEE International Conference on Evolutionary Computation, pp. 1087–1094. IEEE (2006)
Salingaros, N.A.: Symmetry gives meaning to architecture. Symmetry Cult. Sci. 31, 231–260 (2020)
Sibley, F.: Aesthetic concepts. Philosoph. Rev. 68(4), 421–450 (1959)
Skov, M.: Aesthetic appreciation: the view from neuroimaging. Empir. Stud. Arts 37(2), 220–248 (2019)
Spehar, B., Clifford, C.W., Newell, B.R., Taylor, R.P.: Universal aesthetic of fractals. Comput. Graph. 27(5), 813–820 (2003)
Tinio, P.P., Leder, H.: Just how stable are stable aesthetic features? symmetry, complexity, and the jaws of massive familiarization. Acta Physiol. (Oxf) 130(3), 241–250 (2009)
Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: VMV. vol. 1, pp. 273–280 (2001)
Vinhas, A., Assunção, F., Correia, J., Ekárt, A., Machado, P.: Fitness and novelty in evolutionary art. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 225–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31008-4_16
Weichselbaum, H., Leder, H., Ansorge, U.: Implicit and explicit evaluation of visual symmetry as a function of art expertise. i-Perception 9(2), 2041669518761464 (2018)
Weyl, H.: Symmetry, vol. 47. Princeton University Press (2015)
Zeki, S.: Beauty in architecture: not a luxury-only a necessity. Archit. Des. 89(5), 14–19 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Easton, E., Bernardet, U., Ekárt, A. (2023). Is Beauty in the Age of the Beholder?. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-29956-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29955-1
Online ISBN: 978-3-031-29956-8
eBook Packages: Computer ScienceComputer Science (R0)