Skip to main content

Geolet: An Interpretable Model for Trajectory Classification

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXI (IDA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13876))

Included in the following conference series:

Abstract

The large and diverse availability of mobility data enables the development of predictive models capable of recognizing various types of movements. Through a variety of GPS devices, any moving entity, animal, person, or vehicle can generate spatio-temporal trajectories. This data is used to infer migration patterns, manage traffic in large cities, and monitor the spread and impact of diseases, all critical situations that necessitate a thorough understanding of the underlying problem. Researchers, businesses, and governments use mobility data to make decisions that affect people’s lives in many ways, employing accurate but opaque deep learning models that are difficult to interpret from a human standpoint. To address these limitations, we propose Geolet, a human-interpretable machine-learning model for trajectory classification. We use discriminative sub-trajectories extracted from mobility data to turn trajectories into a simplified representation that can be used as input by any machine learning classifier. We test our approach against state-of-the-art competitors on real-world datasets. Geolet outperforms black-box models in terms of accuracy while being orders of magnitude faster than its interpretable competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code available at: github.com/cri98li/Geolet.

  2. 2.

    animals: \(\textit{prec}=2\) \(\textit{ns}=21\); vehicles: \(\textit{prec}=6\) \(\textit{ns}=20\); seabirds: \(\textit{prec}=5\) \(\textit{ns}=50\); geolife: \(\textit{prec}=6\) \(\textit{ns}=50\); taxi: \(\textit{prec}=5\) \(\textit{ns}=50\).

  3. 3.

    \(\textit{prec}\in [4, 5, 6, 7]\); \(k\in [2, 5, 20, 100]\); \(w\in [2, 3, 5]\); \(top_{ss}\in [1, 2, 10, 50]\) on the training set. Hyperparameter choice does not significantly affect the method’s performance. We found constant accuracy values for most of the hyperparameters tested. There were, however, peaks in the accuracy score for some values. Thus, for animals we set \(\textit{prec}=4, w=3\text { and }top_{ss}=2\). For the vehicles \(\textit{prec}=6, w=3\text { and }top_{ss}=10\).

  4. 4.

    n_estimators = range(300, 1500, 300), criterion = [gini, entropy], max_depth = range(2, 20, 3).

  5. 5.

    Tests are performed on a machine with CPU: AMD Ryzen 9 3900X; RAM: 32 GB; OS: EndeavourOS Linux. Due to resource limitations, we used 20% of geolife and 70% of taxi.

References

  1. Andrienko, G.L., et al.: (So) big data and the transformation of the city. Int. J. Data Sci. Anal. 11(4), 311–340 (2021)

    Article  Google Scholar 

  2. Bellman, R., Kalaba, R.: On adaptive control processes. IRE Trans. Autom. Control. 4(2), 1–9 (1959)

    Article  MATH  Google Scholar 

  3. Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., Rinzivillo, S.: Benchmarking and survey of explanation methods for black box models. CoRR abs/2102.13076 (2021)

    Google Scholar 

  4. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 34(5), 1454–1495 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferrero, C.A., Alvares, L.O., Zalewski, W., Bogorny, V.: MOVELETS: exploring relevant subtrajectories for robust trajectory classification. In: SAC, pp. 849–856. ACM (2018)

    Google Scholar 

  6. de Freitas, N.C.A., da Silva, T.L.C., de Macêdo, J.A.F., Junior, L.M.: Using deep learning for trajectory classification in imbalanced dataset. In: FLAIRS Conference (2021)

    Google Scholar 

  7. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  8. Kontopoulos, I., Makris, A., Tserpes, K., Bogorny, V.: Traclets: harnessing the power of computer vision for trajectory classification (2022)

    Google Scholar 

  9. Lee, J., Han, J., Li, X., Gonzalez, H.: TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. Proc. VLDB Endow. 1(1), 1081–1094 (2008)

    Article  Google Scholar 

  10. Lin, J., Keogh, E.J., Lonardi, S., Chiu, B.Y.: A symbolic representation of time series, with implications for streaming algorithms. In: DMKD, pp. 2–11. ACM (2003)

    Google Scholar 

  11. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, T.L., Ifrim, G.: Mrsqm: fast time series classification with symbolic representations. CoRR abs/2109.01036 (2021). arxiv.org/abs/2109.01036

  13. Petry, L.M., da Silva, C.L., Esuli, A., Renso, C., Bogorny, V.: MARC: a robust method for multiple-aspect trajectory classification via space, time, and semantic embeddings. Int. J. Geogr. Inf. Sci. 34(7), 1428–1450 (2020)

    Article  Google Scholar 

  14. da Silva, C.L., Petry, L.M., Bogorny, V.: A survey and comparison of trajectory classification methods. In: BRACIS, pp. 788–793. IEEE (2019)

    Google Scholar 

  15. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps (2014)

    Google Scholar 

  16. Suwardi, I.S., Dharma, D., Satya, D.P., Lestari, D.P.: Geohash index based spatial data model for corporate. In: 2015 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 478–483. IEEE (2015)

    Google Scholar 

  17. Tan, P.N., Steinbach, M.S., Kumar, V.: Introduction to Data Mining. Pearson Education India, Noida (2016)

    Google Scholar 

  18. Theissler, A., Spinnato, F., Schlegel, U., Guidotti, R.: Explainable AI for time series classification: a review, taxonomy and research directions. IEEE Access 10, 100700–100724 (2022)

    Article  Google Scholar 

  19. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: Myway: location prediction via mobility profiling. Inf. Syst. 64, 350–367 (2017)

    Article  Google Scholar 

  20. Vouros, A., et al.: A generalised framework for detailed classification of swimming paths inside the morris water maze. Sci. Rep. 8(1), 1–15 (2018)

    Article  Google Scholar 

  21. Xiao, Z., Wang, Y., Fu, K., Wu, F.: Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS Int. J. Geo Inf. 6(2), 57 (2017)

    Article  Google Scholar 

  22. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In: KDD, pp. 947–956. ACM (2009)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the European Union NextGenerationEU programme under the fuding schemes PNRR-PE-AI scheme (M4C2, investment 1.3, line on Artificial Intelligence) FAIR (Future Artificial Intelligence Research), and “SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics” - Prot. IR0000013. This work is partially supported by the European Community H2020 programme under the funding schemes: H2020-INFRAIA-2019-1: Res. Infr. G.A. 871042 SoBigData++, G.A. 761758 Humane AI, G.A. 952215 TAILOR, ERC-2018-ADG G.A. 834756 XAI, and CHIST-ERA-19-XAI-010 SAI, and by the Green.Dat.AI Horizon Europe research and innovation programme under the G.A. 101070416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Landi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landi, C., Spinnato, F., Guidotti, R., Monreale, A., Nanni, M. (2023). Geolet: An Interpretable Model for Trajectory Classification. In: Crémilleux, B., Hess, S., Nijssen, S. (eds) Advances in Intelligent Data Analysis XXI. IDA 2023. Lecture Notes in Computer Science, vol 13876. Springer, Cham. https://doi.org/10.1007/978-3-031-30047-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30047-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30046-2

  • Online ISBN: 978-3-031-30047-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics