Skip to main content

Solving Partial Differential Equations Using Point-Based Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1889 Accesses

Abstract

Recently, solving partial differential equations (PDEs) using neural networks (NNs) has been attracting increasing interests with promising potential to be applied in wide areas. In this paper, we propose a theoretical model that approximates the operator from a parametric function space to a solution function space and prove its universal approximation theorem in the operator space. For practical application, by regarding the domain of a parametric (or solution) function as a discrete point cloud, we propose a novel idea that implements the theoretical model by introducing the point-based NN as the backbone. We show that the present model can approximate the solution operator of static PDEs using the training data generated on unstructured meshes while most existing methods work for the data generated on lattice grid meshes. We conduct experiments to demonstrate the performance of our model on different types of PDEs. The numerical results verify that our model possesses a higher precision and a faster inference speed compared with the existing models for data of unstructured meshes; in addition, our model has competitive performance compared with the existing works dealing with data of lattice grid meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Networks 9(5), 987–1000 (1998)

    Article  Google Scholar 

  2. He, J., Xu, J.: Mgnet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62(7), 1331–1354 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. 118(21), e2101784118 (2021)

    Article  MathSciNet  Google Scholar 

  4. Ramuhalli, P., Udpa, L., Udpa, S.S.: Finite-element neural networks for solving differential equations. IEEE Trans. Neural Networks 16(6), 1381–1392 (2005)

    Article  Google Scholar 

  5. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, A., Flad, D., Munz, C.D.: Deep neural networks for data-driven les closure models. J. Comput. Phys. 398, 108910 (2019)

    Article  MathSciNet  Google Scholar 

  7. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Weinan, E., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anandkumar, A., et al.: Neural operator: graph kernel network for partial differential equations. In: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations (2020)

    Google Scholar 

  10. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhattacharya, K., Anandkumar, A.: Multipole graph neural operator for parametric partial differential equations. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  11. Li, Z., et al.: Fourier neural operator for parametric partial differential equations. In: International Conference on Learning Representations (2020)

    Google Scholar 

  12. Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M.: Model reduction and neural networks for parametric PDEs. The SMAI J. Comput. Math. 7, 121–157 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  14. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  16. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  18. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6(6), 861–867 (1993)

    Article  Google Scholar 

  19. Chen, T., Chen, H.: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Networks 6(4), 911–917 (1995)

    Article  Google Scholar 

  20. Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1(3), 353–367 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

Download references

Acknowledgments

This work is jointly supported by the National Key R &D Program of China (No. 2018AAA0100303), the Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01) and the ZHANGJIANG LAB, the National Natural Science Foundation of China under Grant 62072111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlian Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hua, N., Lu, W. (2023). Solving Partial Differential Equations Using Point-Based Neural Networks. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics