Skip to main content

Local-Global Semantic Fusion Single-shot Classification Method

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1646 Accesses

Abstract

In few-shot learning tasks, a series of semantic-based methods have shown excellent performance due to the modality fusion of both visual and semantic modalities. However, in single-shot learning tasks, the fused visual modality fails to comprehensively capture the class information since only one image is available. To address this issue, we propose a semantic-based single-shot method which considers from both local and global perspectives. Specifically, we fully exploit local visual features to replace the traditional image-level features in the modality fusion in those semantic-based methods. Moreover, a global classification loss is introduced to enlarge the encoding space for accurate and distinguishable local embeddings. Through a series of experiments, we show that by exploiting local features from a global classification perspective, our model boosts the performance of semantic-based approaches by a large margin on two different data sets and global classification loss is effective on both metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing, pp. 227–236. Springer (1990). https://doi.org/10.1007/978-3-642-76153-9_28

  2. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  3. Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: exploring simple meta-learning for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9062–9071 (2021)

    Google Scholar 

  4. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. ICLR (2020)

    Google Scholar 

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  6. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., Mikolov, T.: Devise: A deep visual-semantic embedding model. Advances in neural information processing systems 26 (2013)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  10. Jiang, X., Havaei, M., Varno, F., Chartrand, G., Chapados, N., Matwin, S.: Learning to learn with conditional class dependencies. In: International Conference on Learning Representations (2018)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Li, A., Huang, W., Lan, X., Feng, J., Li, Z., Wang, L.: Boosting few-shot learning with adaptive margin loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12576–12584 (2020)

    Google Scholar 

  13. Li, W., et al.: Libfewshot: a comprehensive library for few-shot learning. arXiv preprint arXiv:2109.04898 (2021)

  14. Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7260–7268 (2019)

    Google Scholar 

  15. Liu, X., et al.: Learn from concepts: towards the purified memory for few-shot learning. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 888–894. International Joint Conferences on Artificial Intelligence Organization, August 2021. https://doi.org/10.24963/ijcai.2021/123, main Track

  16. Oreshkin, B., Rodríguez López, P., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  18. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  19. Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 49–58 (2016)

    Google Scholar 

  20. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)

    Google Scholar 

  21. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  22. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  23. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850. PMLR (2016)

    Google Scholar 

  24. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  26. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16

    Chapter  Google Scholar 

  27. Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-learning perspective on cold-start recommendations for items. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  28. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  29. Wan, Z., et al.: Transductive zero-shot learning with visual structure constraint. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  30. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  Google Scholar 

  31. Xing, C., Rostamzadeh, N., Oreshkin, B., O Pinheiro, P.O.: Adaptive cross-modal few-shot learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  32. Xu, W., Wang, H., Tu, Z., et al.: Attentional constellation nets for few-shot learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  33. Yang, L., Li, L., Zhang, Z., Zhou, X., Zhou, E., Liu, Y.: DPGN: distribution propagation graph network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13390–13399 (2020)

    Google Scholar 

  34. Yoo, T.K., Choi, J.Y., Kim, H.K.: Feasibility study to improve deep learning in oct diagnosis of rare retinal diseases with few-shot classification. Med. Biol. Eng. Comput. 59(2), 401–415 (2021)

    Article  Google Scholar 

  35. Zhang, B., Li, X., Ye, Y., Huang, Z., Zhang, L.: Prototype completion with primitive knowledge for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3754–3762 (2021)

    Google Scholar 

Download references

Acknowledgement

This research is partly supported by Ministry of Science and Technology, China (No. 2019YFB1311503) and Committee of Science and Technology, Shanghai, China (No.19510711200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang or Yu Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, J., Fang, K., Yu, W., Yang, J., Qiao, Y. (2023). Local-Global Semantic Fusion Single-shot Classification Method. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics