Skip to main content

General Algorithm for Learning from Grouped Uncoupled Data and Pairwise Comparison Data

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1183 Accesses

Abstract

Uncoupled regression is the problem of learning a regression model from uncoupled data that consists of a set of input values (unlabeled data) and a set of output values where the correspondence between the input and output is unknown. A recent study showed that a method using both uncoupled data and pairwise comparison data can learn the optimal model under some assumptions. However, this method cannot use grouped information and may require the implementation (almost) from scratch for some models. In this study, we extend the above existing method for handling group information and derive a general algorithm that can learn a model using the standard regression method by approximating the loss function. The effectiveness of the proposed method is confirmed by synthetic and benchmark data experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pytorch.org/.

  2. 2.

    https://scikit-learn.org/.

  3. 3.

    https://archive.ics.uci.edu/ml/index.php.

References

  1. Carpentier, A., Schlüter, T.: Learning relationships between data obtained independently. In: Artificial Intelligence and Statistics, pp. 658–666 (2016)

    Google Scholar 

  2. Hsu, D., Shi, K., Sun, X.: Linear regression without correspondence. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1530–1539 (2017)

    Google Scholar 

  3. Abid, A., Poon, A., Zou, J.: Linear regression with shuffled labels. arXiv preprint arXiv:1705.01342 (2017)

  4. Xu, L., Niu, G., Honda, J., Sugiyama, M.: Uncoupled regression from pairwise comparison data. In: Advances in Neural Information Processing Systems, pp. 3992–4002 (2019)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press Cambridge (2016)

    Google Scholar 

  6. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2. MIT press Cambridge, MA (2006)

    Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29(5), 1189–1232 (2001)

    Google Scholar 

  9. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes. In: Artificial intelligence and statistics, pp. 567–574. PMLR (2009)

    Google Scholar 

  10. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017)

    Google Scholar 

  11. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Linear regression with shuffled data: statistical and computational limits of permutation recovery. IEEE Trans. Inf. Theory 64(5), 3286–3300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Slawski, M., Rahmani, M., Li, P.: A sparse representation-based approach to linear regression with partially shuffled labels. In: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, pp. 38–48 (2020)

    Google Scholar 

  13. Unnikrishnan, J., Haghighatshoar, S., Vetterli, M.: Unlabeled sensing with random linear measurements. IEEE Trans. Inf. Theory 64(5), 3237–3253 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J., Lafferty, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6(10), 1705–1749 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kohjima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kohjima, M., Nambu, Y., Kurauchi, Y., Yamamoto, R. (2023). General Algorithm for Learning from Grouped Uncoupled Data and Pairwise Comparison Data. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics