Skip to main content

Intuitionistic Fuzzy Universum Support Vector Machine

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1576 Accesses

Abstract

The classical support vector machine is an effective classification technique. It solves a convex optimization problem to give a global solution. But it suffers from noise and outliers. To deal with this, an intuitionistic fuzzy number (IFN) is assigned to the training samples which reduces the effect of noise. In this paper, we propose intuitionistic fuzzy universum support vector machine (IFUSVM), where IFN is assigned to the training data points in presence of universum data. Universum points lead to prior knowledge about data distribution and assignment of IFN to the data points reduces the effect of outliers and noise. Thus, leading to the enhanced generalization property of the model. Numerical experimental results and statistical analysis over 17 binary benchmark UCI datasets show the superiority of the proposed model over the baseline models in terms of rank and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  2. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  3. Osuna, E., Freund, R., Girosit, F.: Training support vector machines: an application to face detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 130–136. IEEE (1997)

    Google Scholar 

  4. Pal, M., Mather, P.M.: Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26(5), 1007–1011 (2005)

    Article  Google Scholar 

  5. Wan, V., Campbell, W.M.: Support vector machines for speaker verification and identification. In: Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  6. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  7. Joachims, T.: Making large-scale support vector machine learning practical, advances in kernel methods. Support Vector Learn. (1999)

    Google Scholar 

  8. Mangasarian, O.L., Wild, E.W.: Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 69–74 (2005)

    Article  Google Scholar 

  9. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  10. Song, Q., Hu, W., Xie, W.: Robust support vector machine with bullet hole image classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 32(4), 440–448 (2002)

    Google Scholar 

  11. Herbrich, R., Weston, J.: Adaptive margin support vector machines for classification (1999)

    Google Scholar 

  12. Graf, A.B., Smola, A.J., Borer, S.: Classification in a normalized feature space using support vector machines. IEEE Trans. Neural Netw. 14(3), 597–605 (2003)

    Article  Google Scholar 

  13. Huang, X., Shi, L., Suykens, J.A.: Support vector machine classifier with pinball loss. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 984–997 (2013)

    Article  Google Scholar 

  14. Lin, C.-F., Wang, S.-D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  15. Zhou, M.-M., Li, L., Lu, Y.-L. Fuzzy support vector machine based on density with dual membership. in: 2009 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 674–678. IEEE (2009)

    Google Scholar 

  16. Tanveer, M., Ganaie, M., Bhattacharjee, A., Lin, C.: Intuitionistic fuzzy weighted least squares twin SVMs. IEEE Trans. Cybern (2022). https://doi.org/10.1109/TCYB.2022.3165879

  17. Ha, M., Wang, C., Chen, J.: The support vector machine based on intuitionistic fuzzy number and kernel function. Soft. Comput. 17(4), 635–641 (2013)

    Article  MATH  Google Scholar 

  18. Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference with the universum. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1009–1016 (2006)

    Google Scholar 

  19. Bai, X., Cherkassky, V.: Gender classification of human faces using inference through contradictions. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 746–750. IEEE (2008)

    Google Scholar 

  20. Liu, C.-L., Hsaio, W.-H., Lee, C.-H., Chang, T.-H., Kuo, T.-H.: Semi-supervised text classification with universum learning. IEEE Trans. Cybern. 46(2), 462–473 (2015)

    Article  Google Scholar 

  21. Richhariya, B., Tanveer, M.: EEG signal classification using universum support vector machine. Expert Syst. Appl. 106, 169–182 (2018)

    Article  Google Scholar 

  22. Richhariya, B., Tanveer, M., Rashid, A.H., Initiative, A.D.N.: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed. Sig. Process. Control 59, 101903 (2020)

    Article  Google Scholar 

  23. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  24. Richhariya, B., Tanveer, M.: A reduced universum twin support vector machine for class imbalance learning. Pattern Recogn. 102, 107150 (2020)

    Article  Google Scholar 

  25. Murphy, P., Aha, D.: UCI repository of machine learning databases (1992). http://www.ics.uci.edu/~mlearn. MLRepository.html

  26. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work is supported and funded by science and Engineering Research Board (SERB) under Mathematical Research Impact-Centric Support (MATRICS) scheme grant no. MTR/2021/000787 and National Supercomputing mission under DST and Miety, Govt. of India with Grant number DST/NSM/RD HPC Appll/2021/03.29. Ms. Anuradha Kumari (File no - 09/1022 (12437)/2021-EMR-I) expresses her gratitude to Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial support provided as fellowship. We are grateful to Indian Institute of Technology Indore, India for providing the facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumari, A., Ganaie, M.A., Tanveer, M. (2023). Intuitionistic Fuzzy Universum Support Vector Machine. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics