Abstract
Convolutional Neural Networks such as U-Net are recently getting popular among researchers in many applications, such as Biomedical Image Segmentation. U-Net is one of the popular deep Convolutional Neural Networks which first contracts the input image using pooling layers and then upscales the feature maps before classifying them. In this paper, we explore the performance of adaptive scaling for U-Net in time series classification. Also, to improve performance, we extract features from the trained U-Net model and use ensemble deep Random Vector Functional Link (edRVFL) to classify them. Experiments on 55 large UCR datasets reveal that adaptive scaling improves the performance of U-Net in time series classification. Also, using edRVFL on extracted features from the trained U-Net model enhances performance. Consequently, our U-Net-edRVFL classifier outperforms other time series classification methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with cote: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)
Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. In: Hameurlain, A., Küng, J., Wagner, R., Madria, S., Hara, T. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII. LNCS, vol. 10420, pp. 24–46. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55608-5_2
Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/
Cheng, W.X., Suganthan, P., Katuwal, R.: Time series classification using diversified ensemble deep random vector functional link and resnet features. Appl. Soft Comput. 112, 107826 (2021). https://doi.org/10.1016/j.asoc.2021.107826
Dash, Y., Mishra, S.K., Sahany, S., Panigrahi, B.K.: Indian summer monsoon rainfall prediction: a comparison of iterative and non-iterative approaches. Appl. Soft Comput. 70, 1122–1134 (2018). https://doi.org/10.1016/j.asoc.2017.08.055
Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495 (2020). https://doi.org/10.1007/s10618-020-00701-z
Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013). https://doi.org/10.1016/j.ins.2013.02.030
Esser, P., Sutter, E., Ommer, B.: A variational U-net for conditional appearance and shape generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)
Ganaie, M., Hu, M., Malik, A., Tanveer, M., Suganthan, P.: Ensemble deep learning: a review. Eng. Appl. Artif. Intell. 115, 105151 (2022). https://doi.org/10.1016/j.engappai.2022.105151
Gao, R., Du, L., Suganthan, P.N., Zhou, Q., Yuen, K.F.: Random vector functional link neural network based ensemble deep learning for short-term load forecasting. Expert Syst. Appl. 206, 117784 (2022). https://doi.org/10.1016/j.eswa.2022.117784, https://www.sciencedirect.com/science/article/pii/S0957417422010545
Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26(2), 310–331 (2013)
Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014)
Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering the intrinsic cardinality and dimensionality of time series using mdl. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1086–1091 (2011). https://doi.org/10.1109/ICDM.2011.54
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Katuwal, R., Suganthan, P., Zhang, L.: An ensemble of decision trees with random vector functional link networks for multi-class classification. Appl. Soft Comput. 70, 1146–1153 (2018). https://doi.org/10.1016/j.asoc.2017.09.020
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lavangnananda, K., Sawasdimongkol, P.: Neural network classifier of time series: a case study of symbolic representation preprocessing for control chart patterns. In: 2012 8th International Conference on Natural Computation, pp. 344–349 (2012). https://doi.org/10.1109/ICNC.2012.6234651
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2015)
Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019). https://doi.org/10.1016/j.autcon.2019.04.005, https://www.sciencedirect.com/science/article/pii/S0926580519301244
Ma, Q., Zhuang, W., Shen, L., Cottrell, G.W.: Time series classification with echo memory networks. Neural Netw. 117, 225–239 (2019). https://doi.org/10.1016/j.neunet.2019.05.008
Malik, A.K., Gao, R., Ganaie, M.A., Tanveer, M., Suganthan, P.N.: Random vector functional link network: recent developments, applications, and future directions (2022). https://doi.org/10.48550/ARXIV.2203.11316
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)
Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5), 76–79 (1992). https://doi.org/10.1109/2.144401
Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1(1), 18 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)
Shi, Q., Hu, M., Suganthan, P.N., Katuwal, R.: Weighting and pruning based ensemble deep random vector functional link network for tabular data classification. Pattern Recogn. 132, 108879 (2022). https://doi.org/10.1016/j.patcog.2022.108879, https://www.sciencedirect.com/science/article/pii/S0031320322003600
Shi, Q., Katuwal, R., Suganthan, P., Tanveer, M.: Random vector functional link neural network based ensemble deep learning. Pattern Recogn. 117, 107978 (2021)
Shi, Q., Suganthan, P.N., Del Ser, J.: Jointly optimized ensemble deep random vector functional link network for semi-supervised classification. Eng. Appl. Artif. Intell. 115, 105214 (2022). https://doi.org/10.1016/j.engappai.2022.105214, https://www.sciencedirect.com/science/article/pii/S0952197622002974
Suganthan, P.N., Katuwal, R.: On the origins of randomization-based feedforward neural networks. Appl. Soft Comput. 105, 107239 (2021). https://doi.org/10.1016/j.asoc.2021.107239
Vuković, N., Petrović, M., Miljković, Z.: A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression. Appl. Soft Comput. 70, 1083–1096 (2018). https://doi.org/10.1016/j.asoc.2017.10.010
Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019). https://doi.org/10.1016/j.patrec.2018.02.010, Deep Learning for Pattern Recognition
Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585, May 2017. https://doi.org/10.1109/IJCNN.2017.7966039
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cheng, W.X., Suganthan, P.N. (2023). Adaptive Scaling for U-Net in Time Series Classification. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-30105-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30104-9
Online ISBN: 978-3-031-30105-6
eBook Packages: Computer ScienceComputer Science (R0)