Skip to main content

Adaptive Scaling for U-Net in Time Series Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Convolutional Neural Networks such as U-Net are recently getting popular among researchers in many applications, such as Biomedical Image Segmentation. U-Net is one of the popular deep Convolutional Neural Networks which first contracts the input image using pooling layers and then upscales the feature maps before classifying them. In this paper, we explore the performance of adaptive scaling for U-Net in time series classification. Also, to improve performance, we extract features from the trained U-Net model and use ensemble deep Random Vector Functional Link (edRVFL) to classify them. Experiments on 55 large UCR datasets reveal that adaptive scaling improves the performance of U-Net in time series classification. Also, using edRVFL on extracted features from the trained U-Net model enhances performance. Consequently, our U-Net-edRVFL classifier outperforms other time series classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with cote: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)

    Article  Google Scholar 

  2. Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. In: Hameurlain, A., Küng, J., Wagner, R., Madria, S., Hara, T. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII. LNCS, vol. 10420, pp. 24–46. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55608-5_2

    Chapter  Google Scholar 

  3. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/

  4. Cheng, W.X., Suganthan, P., Katuwal, R.: Time series classification using diversified ensemble deep random vector functional link and resnet features. Appl. Soft Comput. 112, 107826 (2021). https://doi.org/10.1016/j.asoc.2021.107826

    Article  Google Scholar 

  5. Dash, Y., Mishra, S.K., Sahany, S., Panigrahi, B.K.: Indian summer monsoon rainfall prediction: a comparison of iterative and non-iterative approaches. Appl. Soft Comput. 70, 1122–1134 (2018). https://doi.org/10.1016/j.asoc.2017.08.055

    Article  Google Scholar 

  6. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495 (2020). https://doi.org/10.1007/s10618-020-00701-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013). https://doi.org/10.1016/j.ins.2013.02.030

    Article  MathSciNet  MATH  Google Scholar 

  8. Esser, P., Sutter, E., Ommer, B.: A variational U-net for conditional appearance and shape generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  9. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)

  10. Ganaie, M., Hu, M., Malik, A., Tanveer, M., Suganthan, P.: Ensemble deep learning: a review. Eng. Appl. Artif. Intell. 115, 105151 (2022). https://doi.org/10.1016/j.engappai.2022.105151

  11. Gao, R., Du, L., Suganthan, P.N., Zhou, Q., Yuen, K.F.: Random vector functional link neural network based ensemble deep learning for short-term load forecasting. Expert Syst. Appl. 206, 117784 (2022). https://doi.org/10.1016/j.eswa.2022.117784, https://www.sciencedirect.com/science/article/pii/S0957417422010545

  12. Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26(2), 310–331 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering the intrinsic cardinality and dimensionality of time series using mdl. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1086–1091 (2011). https://doi.org/10.1109/ICDM.2011.54

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  16. Katuwal, R., Suganthan, P., Zhang, L.: An ensemble of decision trees with random vector functional link networks for multi-class classification. Appl. Soft Comput. 70, 1146–1153 (2018). https://doi.org/10.1016/j.asoc.2017.09.020

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Lavangnananda, K., Sawasdimongkol, P.: Neural network classifier of time series: a case study of symbolic representation preprocessing for control chart patterns. In: 2012 8th International Conference on Natural Computation, pp. 344–349 (2012). https://doi.org/10.1109/ICNC.2012.6234651

  19. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  20. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019). https://doi.org/10.1016/j.autcon.2019.04.005, https://www.sciencedirect.com/science/article/pii/S0926580519301244

  22. Ma, Q., Zhuang, W., Shen, L., Cottrell, G.W.: Time series classification with echo memory networks. Neural Netw. 117, 225–239 (2019). https://doi.org/10.1016/j.neunet.2019.05.008

    Article  MATH  Google Scholar 

  23. Malik, A.K., Gao, R., Ganaie, M.A., Tanveer, M., Suganthan, P.N.: Random vector functional link network: recent developments, applications, and future directions (2022). https://doi.org/10.48550/ARXIV.2203.11316

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  25. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  26. Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5), 76–79 (1992). https://doi.org/10.1109/2.144401

    Article  Google Scholar 

  27. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1(1), 18 (2018)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, Q., Hu, M., Suganthan, P.N., Katuwal, R.: Weighting and pruning based ensemble deep random vector functional link network for tabular data classification. Pattern Recogn. 132, 108879 (2022). https://doi.org/10.1016/j.patcog.2022.108879, https://www.sciencedirect.com/science/article/pii/S0031320322003600

  31. Shi, Q., Katuwal, R., Suganthan, P., Tanveer, M.: Random vector functional link neural network based ensemble deep learning. Pattern Recogn. 117, 107978 (2021)

    Article  Google Scholar 

  32. Shi, Q., Suganthan, P.N., Del Ser, J.: Jointly optimized ensemble deep random vector functional link network for semi-supervised classification. Eng. Appl. Artif. Intell. 115, 105214 (2022). https://doi.org/10.1016/j.engappai.2022.105214, https://www.sciencedirect.com/science/article/pii/S0952197622002974

  33. Suganthan, P.N., Katuwal, R.: On the origins of randomization-based feedforward neural networks. Appl. Soft Comput. 105, 107239 (2021). https://doi.org/10.1016/j.asoc.2021.107239

    Article  Google Scholar 

  34. Vuković, N., Petrović, M., Miljković, Z.: A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression. Appl. Soft Comput. 70, 1083–1096 (2018). https://doi.org/10.1016/j.asoc.2017.10.010

    Article  Google Scholar 

  35. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019). https://doi.org/10.1016/j.patrec.2018.02.010, Deep Learning for Pattern Recognition

  36. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585, May 2017. https://doi.org/10.1109/IJCNN.2017.7966039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, W.X., Suganthan, P.N. (2023). Adaptive Scaling for U-Net in Time Series Classification. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics