Skip to main content

Permutation Elementary Cellular Automata: Analysis and Application of Simple Examples

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

Abstract

This paper studies simple three-layer digital dynamical systems related to recurrent-type neural networks. The input to hidden layers construct an elementary cellular automaton and the hidden to output layers are one-to-one connection described by a permutation. Depending on the permutation, the systems generate various periodic orbits. Applications include walking robots, switching power converters, and reservoir computing. In order to analyze the dynamics, we introduce two feature quantities that evaluate complexity and stability of the periodic orbits. Calculating the feature quantities in simple example systems, we have clarified that the systems can generate various stable periodic orbits. Presenting an FPGA based hardware prototype, typical periodic orbits are confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolfram, S.: Cellular automata and complexity: collected papers. CRC Press (2018)

    Google Scholar 

  2. Chua, L.O.: A nonlinear dynamics perspective of Wolfram’s new kind of science. World Scientific (2006)

    Google Scholar 

  3. SchĂĽle, M., Stoop, R.: A full computation-relevant topological dynamics classification of elementary cellular automata. Chaos 22, 043143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wada, M., Kuroiwa, J., Nara, S.: Completely reproducible description of digital sound data with cellular automata. Phys. Lett. A 306, 110–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yilmaz, O.: Symbolic computation using cellular automata-based hyperdimensional computing. Neural Comput. 27, 2661–2692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019)

    Article  Google Scholar 

  7. Chowdhury, D., Basu, S., Gupta, I., Chaudhuri, P.: Design of CAECC - cellular automata based error correcting code. IEEE Trans. Comput. 43, 759–764 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hopfield, J.J.: Neural networks and physical systems with emergent collective computation abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Michel, A.N., Farrell, J.A.: Associative memories via artificial neural networks. IEEE Control Syst. Mag. 10, 6–17 (1990)

    Article  Google Scholar 

  10. Sato, R., Saito, T.: Stabilization of desired periodic orbits in dynamic binary neural networks. Neurocomputing 248, 19–27 (2017)

    Article  Google Scholar 

  11. Minati, L., Frasca, M., Yoshimura, N., Koike, Y.: Versatile locomotion control of a hexapod robot using a hierarchical network of nonlinear oscillator circuits. IEEE Acess 6, 8042–8065 (2018)

    Article  Google Scholar 

  12. Suzuki, T., Saito, T.: Synthesis of three-layer dynamic binary neural networks for control of hexapod walking robots. In: Proceedings IEEE/CNNA (2021)

    Google Scholar 

  13. Holderbaum, W.: Application of neural network to hybrid systems with binary inputs. IEEE Trans. Neural Netw. 18(4), 1254–1261 (2007)

    Article  Google Scholar 

  14. Udagawa, H., Okano, T., Saito, T.: Permutation binary neural networks: analysis of periodic orbits and its applications. Discrete Contin. Dyn. Syst. Ser. B 28(1), 748–764 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anzai, S., Suzuki, T., Saito, T.: Dynamic binary neural networks with time-variant parameters and switching of desired periodic orbits. Neurocomputing 457, 357–364 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimichi Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okano, T., Saito, T. (2023). Permutation Elementary Cellular Automata: Analysis and Application of Simple Examples. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics