Skip to main content

Factual Error Correction in Summarization with Retriever-Reader Pipeline

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1213 Accesses

Abstract

Summarization models compress the source text without sacrificing the primary information. However, about 30% of summaries produced by state-of-the-art summarization models suffer from the factual inconsistencies between source text and summary, also known as hallucinations, making them less trustworthy. It has been challenging to reduce hallucinations, especially entity hallucinations. Most prior works use the entire source text for factual error correction, while input length is often limited. It prevents models from checking facts precisely and limits its applications on long document summarization. To address this issue, we propose a post-editing factual error correction method based on a Retriever-Reader pipeline. After the summarization model generates the summary, entities in the summary are examined and corrected iteratively by retrieving and reading only the most relevant parts of the source document. We validate the proposed approach on the CNN/DM and Gigaword datasets. Experiments show that the proposed approach outperforms all the baseline models in the consistency metric. Better results are also achieved on human evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  2. Kryściński, W., McCann, B., Xiong, C., Socher, R.: Evaluating the factual consistency of abstractive text summarization. In: EMNLP, pp. 9332–9346 (2020)

    Google Scholar 

  3. Cao, Z., Wei, F., Li, W., Li, S.: Faithful to the original: fact aware neural abstractive summarization. In: AAAI (2018)

    Google Scholar 

  4. Maynez, J., Narayan, S., Bohnet, B., McDonald, R.: On faithfulness and factuality in abstractive summarization. In: ACL, pp. 1906–1919 (2020)

    Google Scholar 

  5. Zhao, Z., Cohen, S.B., Webber, B.: Reducing quantity hallucinations in abstractive summarization. In: EMNLP(Findings), pp. 2237–2249 (2020)

    Google Scholar 

  6. Aralikatte, R., Narayan, S., Maynez, J., Rothe, S., McDonald, R.: Focus attention: promoting faithfulness and diversity in summarization. In: ACL-IJCNLP, pp. 6078–6095 (2021)

    Google Scholar 

  7. Nan, F., et al.: Improving factual consistency of abstractive summarization via question answering. In: ACL-IJCNLP, pp. 6881–6894 (2021)

    Google Scholar 

  8. Chen, S., Zhang, F., Sone, K., Roth, D.: Improving faithfulness in abstractive summarization with contrast candidate generation and selection. In: NAACL, pp. 5935–5941 (2021)

    Google Scholar 

  9. Huang, L., Wu, L., Wang, L.: Knowledge graph-augmented abstractive summarization with semantic-driven cloze reward. In: ACL, pp. 5094–5107 (2020)

    Google Scholar 

  10. Zhang, M., Zhou, G., Yu, W., Liu, W.: Far-ass: fact-aware reinforced abstractive sentence summarization. Inf. Process. Manage. 58(3), 102478 (2021)

    Article  Google Scholar 

  11. Dong, Y., Wang, S., Gan, Z., Cheng, Y., Cheung, J.C.K., Liu, J.: Multi-fact correction in abstractive text summarization. In: EMNLP, pp. 9320–9331 (2020)

    Google Scholar 

  12. Cao, M., Dong, Y., Wu, J., Cheung, J.C.K.: Factual error correction for abstractive summarization models. In: EMNLP, pp. 6251–6258 (2020)

    Google Scholar 

  13. Lewis, M., et al.: Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL, pp. 7871–7880 (2020)

    Google Scholar 

  14. Sen, P., Saffari, A.: What do models learn from question answering datasets? In: EMNLP, pp. 2429–2438 (2020)

    Google Scholar 

  15. Ko, M., Lee, J., Kim, H., Kim, G., Kang, J.: Look at the first sentence: position bias in question answering. In: EMNLP, pp. 1109–1121 (2020)

    Google Scholar 

  16. Falke, T., Ribeiro, L.F., Utama, P.A., Dagan, I., Gurevych, I.: Ranking generated summaries by correctness: an interesting but challenging application for natural language inference. In: ACL, pp. 2214–2220 (2019)

    Google Scholar 

  17. Cao, S., Wang, L.: Cliff: contrastive learning for improving faithfulness and factuality in abstractive summarization. In: EMNLP, pp. 6633–6649 (2021)

    Google Scholar 

  18. Zhang, J., Zhao, Y., Saleh, M., Liu, P.: Pegasus: pre-training with extracted gap-sentences for abstractive summarization. In: ICML, pp. 11328–11339. PMLR (2020)

    Google Scholar 

  19. Zhu, C., et al.: Enhancing factual consistency of abstractive summarization. In: NAACL, pp. 718–733 (2021)

    Google Scholar 

  20. Lee, D., et al.: Capturing speaker incorrectness: speaker-focused post-correction for abstractive dialogue summarization. In: EMNLP(newsum), pp. 65–73 (2021)

    Google Scholar 

  21. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  22. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  23. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  24. Nallapati, R., Zhou, B., dos Santos, C., Gulçehre, Ç., Xiang, B.: Abstractive text summarization using sequence-to-sequence rnns and beyond. In: CoNLL, pp. 280–290 (2016)

    Google Scholar 

  25. Graff, D., Kong, J., Chen, K., Maeda, K.: English gigaword. Linguistic Data Consortium, Philadelphia 4(1), 34 (2003)

    Google Scholar 

  26. Gehrmann, S., Deng, Y., Rush, A.M.: Bottom-up abstractive summarization. In: EMNLP, pp. 4098–4109 (2018)

    Google Scholar 

  27. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: ACL, pp. 1073–1083 (2017)

    Google Scholar 

  28. Song, K., et al.: Joint parsing and generation for abstractive summarization. In: AAAI, vol. 34, pp. 8894–8901 (2020)

    Google Scholar 

  29. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: EMNLP-IJCNLP, pp. 3730–3740 (2019)

    Google Scholar 

  30. Laban, P., Hsi, A., Canny, J., Hearst, M.A.: The summary loop: learning to write abstractive summaries without examples. In: ACL, pp. 5135–5150 (2020)

    Google Scholar 

  31. Shah, D., Schuster, T., Barzilay, R.: Automatic fact-guided sentence modification. In: AAAI. 34, pp. 8791–8798 (2020)

    Google Scholar 

  32. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP, pp. 38–45 (2020)

    Google Scholar 

  33. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. NIPS 32 (2019)

    Google Scholar 

  34. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: EMNLP, pp. 2383–2392 (2016)

    Google Scholar 

  35. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arxiv 2017. arXiv preprint arXiv:1711.05101

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Liu, J., Gao, H. (2023). Factual Error Correction in Summarization with Retriever-Reader Pipeline. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics