Skip to main content

Context-Based Point Generation Network for Point Cloud Completion

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

  • 1591 Accesses

Abstract

Existing sparse-to-dense methods for point cloud completion generally focus on designing refinement and expansion modules to expand the point cloud from sparse to dense. This ignores to preserve a well-performed generation process for the points at the sparse level, which leads to the loss of shape priors to the dense point cloud. To resolve this challenge, we introduce Transformer to both feature extraction and point generation processes, and propose a Context-based Point Generation Network (CPGNet) with Point Context Extraction (PCE) and Context-based Point Transformation (CPT) to control the point generation process at the sparse level. Our CPGNet can infer the missing point clouds at the sparse level via PCE and CPT blocks, which provide the well-arranged center points for generating the dense point clouds. The PCE block can extract both local and global context features of the observed points. Multiple PCE blocks in the encoder hierarchically offer geometric constraints and priors for the point completion. The CPT block can fully exploit geometric contexts existing in the observed point clouds, and then transform them into context features of the missing points. Multiple CPT blocks in the decoder progressively refine the context features, and finally generate the center points for the missing shapes. Quantitative and visual comparisons on PCN and ShapeNet-55 datasets demonstrate our model outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. ACM Trans. Graph. 37(4), 71 (2018)

    Article  Google Scholar 

  2. Dosovitskiy, A., et al.: An image is worth 16x16 words: Ttansformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  3. Fan, S., Dong, Q., Zhu, F., Lv, Y., Ye, P., Wang, F.Y.: SCF-Net: learning spatial contextual features for large-scale point cloud segmentation. In: CVPR, pp. 14504–14513 (2021)

    Google Scholar 

  4. Groueix, T., Fisher, M., Kim, V., Russell, B., Aubry, M.: AtlasNet: a papier-mâché approach to learning 3d surface generation. arxiv 2018. arXiv preprint arXiv:1802.05384 (1802)

  5. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3d surface generation. In: CVPR, pp. 216–224 (2018)

    Google Scholar 

  6. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021)

    Article  Google Scholar 

  7. He, C., Li, R., Li, S., Zhang, L.: Voxel set transformer: a set-to-set approach to 3D object detection from point clouds. In: CVPR, pp. 8417–8427 (2022)

    Google Scholar 

  8. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-Net: point fractal network for 3D point cloud completion. In: CVPR, pp. 7662–7670 (2020)

    Google Scholar 

  9. Lai, X., et al.: Stratified transformer for 3D point cloud segmentation. In: CVPR, pp. 8500–8509 (2022)

    Google Scholar 

  10. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  11. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3D object detection with pointformer. In: CVPR, pp. 7463–7472 (2021)

    Google Scholar 

  12. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  13. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  14. Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning for point cloud segmentation. In: CVPR, pp. 8489–8499 (2022)

    Google Scholar 

  15. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: SEGcloud: semantic segmentation of 3D point clouds. In: International conference on 3D vision (3DV), pp. 537–547. IEEE (2017)

    Google Scholar 

  16. Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.: TopNet: structural point cloud decoder. In: CVPR, pp. 383–392 (2019)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  18. Wang, P., et al.: Omni-DETR: omni-supervised object detection with transformers. In: CVPR, pp. 9367–9376 (2022)

    Google Scholar 

  19. Wang, X., Ang Jr, M.H., Lee, G.H.: Cascaded refinement network for point cloud completion. In: CVPR, pp. 790–799 (2020)

    Google Scholar 

  20. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Article  Google Scholar 

  21. Wen, X., et al.: PMP-Net: point cloud completion by learning multi-step point moving paths. In: CVPR, pp. 7443–7452 (2021)

    Google Scholar 

  22. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: CVPR, pp. 9621–9630 (2019)

    Google Scholar 

  23. Wu, Z., et al.: 3D shapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  24. Xiang, P., et al.: SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer. In: ICCV, pp. 5499–5509 (2021)

    Google Scholar 

  25. Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 365–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_21

    Chapter  Google Scholar 

  26. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: CVPR, pp. 206–215 (2018)

    Google Scholar 

  27. Yew, Z.J., Lee, G.H.: REGTR: end-to-end point cloud correspondences with transformers. In: CVPR, pp. 6677–6686 (2022)

    Google Scholar 

  28. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: ICCV, pp. 12498–12507 (2021)

    Google Scholar 

  29. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: International conference on 3D vision (3DV), pp. 728–737 (2018)

    Google Scholar 

  30. Zhang, W., Yan, Q., Xiao, C.: Detail preserved point cloud completion via separated feature aggregation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 512–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_31

    Chapter  Google Scholar 

  31. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)

    Google Scholar 

  32. Zhou, T., Li, L., Bredell, G., Li, J., Konukoglu, E.: Volumetric memory network for interactive medical image segmentation. Med. Image Anal. 83, 102599 (2022)

    Google Scholar 

  33. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation under Grant ZR2021QF062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, L., Li, R., Wei, H., Zhao, Y., Li, R. (2023). Context-Based Point Generation Network for Point Cloud Completion. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics